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Preface

The goal of this book is to introduce the reader to the intellectual beauty, and philosophical implications,
of the fact that nature obeys Hamilton’s Action Principle that underlies the Lagrangian and Hamiltonian
analytical formulations of classical mechanics. These variational methods, which were developed for classical
mechanics during the 18" —19*" century, have become the preeminent formalisms for classical dynamics, plus
many other branches of modern science and engineering. The goal of this book is to lead the reader from
the intuitive Newtonian vectorial formulation, to introduction of the more abstract variational principles
that underlie Hamilton’s Principle, and the related Lagrangian and Hamiltonian analytical formulations.
This culminates in discussion of the contributions of variational principles to classical mechanics and the
development of both relativistic and quantum mechanics. The broad scope of this book attempts to unify
the undergraduate physics curriculum by bridging the chasm that divides the Newtonian vector-differential
formulation, and the integral variational formulation of classical mechanics, as well as the corresponding
philosophical approaches adopted in classical and quantum physics. This book introduces the powerful
variational techniques in mathematics, and their application to physics. Application of the concepts of the
variational approach to classical mechanics illustrates the power and beauty of using variational principles.

The development of this textbook was influenced by two textbooks: The Variational Principles of Me-
chanics by Cornelius Lanczos (1949) [La49], and Classical Mechanics (1950) by Herbert Goldstein[Go50].
The present textbook was developed to provide a modern presentation of the techniques and philosophical
implications of the variational approaches to classical mechanics, with a breadth and depth close to that
provided by Goldstein and Lanczos, but in a format that better matches the needs of the undergraduate
student. An additional goal is to bridge the gap between classical and modern physics in the undergraduate
curriculum.

This book was written in support of the physics junior/senior undergraduate course P235W entitled
“Variational Principles in Classical Mechanics” that the author taught at the University of Rochester between
1993 — 2015. This book is based on lecture notes that were distributed to students to minimize note taking
during lectures. The target audience of this course typically comprised &~ 70% junior/senior undergraduates,
~ 25% sophomores, < 5% graduate students, and the occasional well-prepared freshman. The target audience
was physics and astrophysics majors, but the course attracted a significant fraction of majors from other
disciplines such as mathematics, chemistry, optics, engineering, music, and the humanities. As a consequence,
the book includes appreciable introductory level physics, plus mathematical review material, to accommodate
the diverse range of prior preparation of the students. This textbook includes material that extends beyond
what typically is covered during a one-term course. This additional material is presented to illustrate the
importance and broad applicability of variational concepts to classical mechanics. To conform with modern
literature in this field, this book follows the widely-adopted nomenclature used in “Classical Mechanics” by
Goldstein[Go50], with additions by Johns[Jo05] plus the present textbook.

An interactive, on-line, version of this book is available at https://phys.libretexts.org/Bookshelves/Classical
_ Mechanics/Book%3A _Variational Principles in_Classical Mechanics_(Cline). The scientific content of
this Libretexts version is the same as the present textbook. The P235 homework problems, plus a Glossary,
that are included in the Libretexts on-line version, are not included in this printed textbook to minimize
the publication length. To develop problem-solving skills, users should study the P235 homework problems,
available via Libretexts, as well as the compilations of worked problems, with corresponding solutions, that
are available in the literature [Lal0, Li94, Th04]. The third edition of this book has updated the discussion
of the important role played by the Poisson bracket formalism in Hamiltonian mechanics. This edition has
adopted the modern brace convention for writing the Poisson bracket, replacing Goldstein’s square-bracket
convention used in previous editions of this textbook.

xvii



xviil PREFACE

The front cover picture of this book shows a sailplane soaring high above the Italian Alps. This picture
epitomizes the unlimited horizon of opportunities provided when the full dynamic range of variational princi-
ples are applied to classical mechanics. The adjacent pictures of the galaxy, and the skier, represent the wide
dynamic range of applicable topics that span from the origin of the universe, to everyday life. These cover
pictures reflect the beauty and unity of the foundation provided by variational principles to the development
of classical mechanics.

The book is broken into four major sections, the first of which presents a brief historical introduction
(chapter 1), followed by a review of the Newtonian formulation of mechanics plus gravitation (chapter
2), linear oscillators and wave motion (chapter 3), and an introduction to non-linear dynamics and chaos
(chapter 4). The second section introduces the variational principles of analytical mechanics that underlie
this book. It includes an introduction to the calculus of variations (chapter 5), the Lagrangian formulation of
mechanics with applications to holonomic and non-holonomic systems (chapter 6), a discussion of symmetries,
invariance, plus Noether’s theorem (chapter 7). This book presents an introduction to the Hamiltonian, the
Hamiltonian formulation of mechanics, the Routhian reduction technique, and a discussion of the subtleties
involved in applying variational principles to variable-mass problems.(Chapter 8). This book includes a
unified introduction to Hamiltons Principle, introduces a new approach for applying Hamilton’s Principle
to systems subject to initial boundary conditions, and discusses how best to exploit the hierarchy of related
formulations based on action, Lagrangian/Hamiltonian, and equations of motion, when solving problems
subject to symmetries (chapter 9). A consolidated introduction to the application of the variational approach
to nonconservative systems is presented (chapter 10). The third section of the book, applies Lagrangian and
Hamiltonian formulations of classical dynamics to central force problems (chapter 11), motion in non-inertial
frames (chapter 12), rigid-body rotation (chapter 13), and coupled linear oscillators (chapter 14). The fourth
section of the book introduces advanced applications of Hamilton’s Action Principle, Lagrangian mechanics
and Hamiltonian mechanics. These include Poisson brackets, Liouville’s theorem, canonical transformations,
Hamilton-Jacobi theory, the action-angle technique (chapter 15), and classical mechanics in the continua
(chapter 16). This is followed by a brief review of the revolution in classical mechanics introduced by
Einstein’s theory of relativistic mechanics. The extended theory of Lagrangian and Hamiltonian mechanics
is used to apply variational techniques to the Special Theory of Relativity, followed by a discussion of the
use of variational principles in the development of the General Theory of Relativity (chapter 17). The
book finishes with a brief review of the role of variational principles in bridging the gap between classical
mechanics and quantum mechanics, (chapter 18). These advanced topics extend beyond the typical syllabus
for an undergraduate classical mechanics course. They are included to stimulate student interest in physics
by giving them a glimpse of the physics at the summit that they have struggled to climb. This glimpse
illustrates the breadth of classical mechanics, and the pivotal role that variational principles have played in
the development of classical, relativistic, quantal, and statistical mechanics.
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Prologue

Two dramatically different philosophical approaches to science were developed in the field of classical me-
chanics during the 17" - 18" centuries. This time period coincided with the Age of Enlightenment in Europe
during which remarkable intellectual and philosophical developments occurred. This was a time when both
philosophical and causal arguments were equally acceptable in science, in contrast with current convention
where there appears to be tacit agreement to discourage use of philosophical arguments in science.

Snell’s Law: The genesis of two contrasting philosophical ap-
proaches to science relates back to early studies of the reflection
and refraction of light. The velocity of light in a medium of re-
fractive index n equals v = £. Thus a light beam incident at an
angle 61, to the normal of a plane interface between medium 1
and medium 2, is refracted at an angle 5 in medium 2, where the

angles are related by Snell’s Law.

sinf;  v1  ne

=—== Snell’s L
sinfs vy ng (Spell’s Law)
Ibn Sahl of Bagdad (984) first described the refraction of light,
while Snell (1621) derived his law mathematically. Both of these
scientists used the “vectorial approach” where the light velocity v
is considered to be a vector pointing in the direction of propaga-
tion.

Fermat’s Principle: Fermat’s principle of least time (1657),
which is based on the work of Hero of Alexandria (~ 60) and Ibn
al-Haytham (1021), states that “light travels between two given
points along the path of shortest time”. The transit time 7 of a
light beam between two locations A and B, in a medium with
position-dependent refractive index n(s), is given by

tg 1 (B
T :/ dt = —/ n(s)ds (Fermat’s Principle)
ta cJa
Fermat’s Principle leads to the derivation of Snell’s Law.
Philosophically the physics underlying the contrasting vectorial
and Fermat’s Principle derivations of Snell’s Law are dramatically
different. The vectorial approach is based on differential relations
between the velocity vectors in the two media, whereas Fermat’s
variational approach is based on the fact that the light prefer-
entially selects a path for which the integral of the transit time
between the initial location A and the final location B is mini-

“Vectorial”

“Variational”

B

Figure 1: Vectorial and variational represen-
tations of Snell’s Law for refraction of light.

mized. That is, the first approach is based on “vectorial mechanics” whereas Fermat’s approach is based on
variational principles in that the path between the initial and final locations is varied to find the path that
minimizes the transit time. Fermat’s enunciation of variational principles in physics played a key role in the
historical development, and subsequent exploitation, of the principle of least action in analytical formulations

of classical mechanics as discussed below.

Xix
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Newtonian mechanics: Momentum and force are vectors that underlie the Newtonian formulation of
classical mechanics. Newton’s monumental treatise, entitled “Philosophiae Naturalis Principia Mathemat-
ica”, published in 1687, established his three universal laws of motion, the universal theory of gravitation,
the derivation of Kepler’s three laws of planetary motion, and the development of calculus. Newton’s three
universal laws of motion provide the most intuitive approach to classical mechanics in that they are based on
vector quantities like momentum, and the rate of change of momentum, which are related to force. Newton’s
equation of motion

dp
Cdt
is a vector differential relation between the instantaneous forces and rate of change of momentum, or equiva-
lent instantaneous acceleration, all of which are vector quantities. Momentum and force are easy to visualize,
and both cause and effect are embedded in Newtonian mechanics. Thus, if all of the forces, including the
constraint forces, acting on the system are known, then the motion is solvable for two body systems. The
mathematics for handling Newton’s “vectorial mechanics” approach to classical mechanics is well established.

F (Newton’s equation of motion)

Analytical mechanics: Variational principles apply to many aspects of our daily life. Typical examples
include; selecting the optimum compromise in quality and cost when shopping, selecting the fastest route
to travel from home to work, or selecting the optimum compromise to satisfy the disparate desires of the
individuals comprising a family. Variational principles underlie the analytical formulation of mechanics. It
is astonishing that the laws of nature are consistent with variational principles involving the principle of
least action. Minimizing the action integral led to the development of the mathematical field of variational
calculus, plus the analytical variational approaches to classical mechanics, by Euler, Lagrange, Hamilton,
and Jacobi.

Leibniz, who was a contemporary of Newton, introduced methods based on a quantity called “vis viva”,
which is Latin for “living force” and equals twice the kinetic energy. Leibniz believed in the philosophy
that God created a perfect world where nature would be thrifty in all its manifestations. In 1707, Leibniz
proposed that the optimum path is based on minimizing the time integral of the wvis viva, which is equiva-
lent to the action integral of Lagrangian/Hamiltonian mechanics. In 1744 Euler derived the Leibniz result
using variational concepts while Maupertuis restated the Leibniz result based on teleological arguments.
The development of Lagrangian mechanics culminated in the 1788 publication of Lagrange’s monumental
treatise entitled “Mécanique Analytique”. Lagrange used d’Alembert’s Principle to derive Lagrangian me-
chanics providing a powerful analytical approach to determine the magnitude and direction of the optimum
trajectories, plus the associated forces.

The culmination of the development of analytical mechanics occurred in 1834 when Hamilton proposed
his Principle of Least Action, as well as developing Hamiltonian mechanics which is the premier variational
approach in science. Hamilton’s concept of least action is defined to be the time integral of the Lagrangian.
Hamilton’s Action Principle (1834) minimizes the action integral S defined by

B
S :/ L(q,q,t)dt (Hamilton’s Principle)
A

In the simplest form, the Lagrangian L(q, q,t) equals the difference between the kinetic energy T' and the
potential energy U. Hamilton’s Least Action Principle underlies Lagrangian mechanics. This Lagrangian is
a function of n generalized coordinates ¢; plus their corresponding velocities ¢;. Hamilton also developed
the premier variational approach, called Hamiltonian mechanics, that is based on the Hamiltonian H(q, p,t)
which is a function of the n fundamental position ¢; plus the conjugate momentum p; variables. In 1843
Jacobi provided the mathematical framework required to fully exploit the power of Hamiltonian mechanics.
Note that the Lagrangian, Hamiltonian, and the action integral, all are scalar quantities which simplifies
derivation of the equations of motion compared with the vector calculus used by Newtonian mechanics.
Figure 2 presents a philosophical roadmap illustrating the hierarchy of philosophical approaches based on
Hamilton’s Action Principle, that are available for deriving the equations of motion of a system. The primary
Stagel uses Hamilton’s Action functional, S = fttlf L(q, q,t)dt to derive the Lagrangian, and Hamiltonian
functionals which provide the most fundamental and sophisticated level of understanding. Stagel involves
specifying all the active degrees of freedom, as well as the interactions involved. Stage2 uses the Lagrangian
or Hamiltonian functionals, derived at Stagel, in order to derive the equations of motion for the system of
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Hamilton’s action principle

Stage 1
Y

Hamiltonian .«€—) Lagrangian €——— d’Alembert’s Principle

Stage 2

Y

Equations of motion < Newtonian mechanics

Stage 3

Solution for motion < Initial conditions

Figure 2: Philosophical road map of the hierarchy of stages involved in analytical mechanics. Hamilton’s
Action Principle is the foundation of analytical mechanics. Stage 1 uses Hamilton’s Principle to derive the
Lagrangian and Hamiltonian. Stage 2 uses either the Lagrangian or Hamiltonian to derive the equations
of motion for the system. Stage 3 uses these equations of motion to solve for the actual motion using
the assumed initial conditions. The Lagrangian approach can be derived directly based on d’Alembert’s
Principle. Newtonian mechanics can be derived directly based on Newton’s Laws of Motion. The advantages
and power of Hamilton’s Action Principle are unavailable if the Laws of Motion are derived using either
d’Alembert’s Principle or Newton’s Laws of Motion.

interest. Stage3d then uses these derived equations of motion to solve for the motion of the system subject to
a given set of initial boundary conditions. Note that Lagrange first derived Lagrangian mechanics based on
d’ Alembert’s Principle, while Newton’s Laws of Motion specify the equations of motion used in Newtonian
mechanics.

The analytical approach to classical mechanics appeared contradictory to Newton’s intuitive vector-
ial treatment of force and momentum. There is a dramatic difference in philosophy between the vector-
differential equations of motion derived by Newtonian mechanics, which relate the instantaneous force to
the corresponding instantaneous acceleration, and analytical mechanics, where minimizing the scalar action
integral involves integrals over space and time between specified initial and final states. Analytical mechanics
uses variational principles to determine the optimum trajectory, from a continuum of tentative possibilities,
by requiring that the optimum trajectory minimizes the action integral between specified initial and final
conditions.

Initially there was considerable prejudice and philosophical opposition to use of the variational principles
approach which is based on the assumption that nature follows the principles of economy. The variational
approach is not intuitive, and thus it was considered to be speculative and “metaphysical”’, but it was
tolerated as an efficient tool for exploiting classical mechanics. This opposition to the variational principles
underlying analytical mechanics, delayed full appreciation of the variational approach until the start of the
20" century. As a consequence, the intuitive Newtonian formulation reigned supreme in classical mechanics
for over two centuries, even though the remarkable problem-solving capabilities of analytical mechanics were
recognized and exploited following the development of analytical mechanics by Lagrange.

The full significance and superiority of the analytical variational formulations of classical mechanics
became well recognised and accepted following the development of the Special Theory of Relativity in 1905.
The Theory of Relativity requires that the laws of nature be invariant to the reference frame. This is not
satisfied by the Newtonian formulation of mechanics which assumes one absolute frame of reference and a
separation of space and time. In contrast, the Lagrangian and Hamiltonian formulations of the principle of
least action remain valid in the Theory of Relativity, if the Lagrangian is written in a relativistically-invariant
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form in space-time. The complete invariance of the variational approach to coordinate frames is precisely
the formalism necessary for handling relativistic mechanics.

Hamiltonian mechanics, which is expressed in terms of the conjugate variables (q, p), relates classical
mechanics directly to the underlying physics of quantum mechanics and quantum field theory. As a conse-
quence, the philosophical opposition to exploiting variational principles no longer exists, and Hamiltonian
mechanics has become the preeminent formulation of modern physics. The reader is free to draw their own
conclusions regarding the philosophical question “is the principle of economy a fundamental law of classical
mechanics, or is it a fortuitous consequence of the fundamental laws of nature?”

From the late seventeenth century, until the dawn of modern physics at the start of the twentieth cen-
tury, classical mechanics remained a primary driving force in the development of physics. Classical mechanics
embraces an unusually broad range of topics spanning motion of macroscopic astronomical bodies to mi-
croscopic particles in nuclear and particle physics, at velocities ranging from zero to near the velocity of
light, from one-body to statistical many-body systems, as well as having extensions to quantum mechanics.
Introduction of the Special Theory of Relativity in 1905, and the General Theory of Relativity in 1916,
necessitated modifications to classical mechanics for relativistic velocities, and can be considered to be an
extended theory of classical mechanics. Since the 1920’s, quantal physics has superseded classical mechanics
in the microscopic domain. Although quantum physics has played the leading role in the development of
physics during much of the past century, classical mechanics still is a vibrant field of physics that recently
has led to exciting developments associated with non-linear systems and chaos theory. This has spawned
new branches of physics and mathematics as well as changing our notion of causality.

Goals: The primary goal of this book is to introduce the reader to the powerful variational-principles
approaches that play such a pivotal role in classical mechanics and many other branches of modern science
and engineering. This book emphasizes the intellectual beauty of these remarkable developments, as well as
stressing the philosophical implications that have had a tremendous impact on modern science. A secondary
goal is to apply variational principles to solve advanced applications in classical mechanics in order to
introduce many sophisticated and powerful mathematical techniques that underlie much of modern physics.

This book starts with a review of Newtonian mechanics plus the solutions of the corresponding equations
of motion. This is followed by an introduction to Lagrangian mechanics, based on d’Alembert’s Principle,
in order to develop familiarity in applying variational principles to classical mechanics. This leads to intro-
duction of the more fundamental Hamilton’s Action Principle, plus Hamiltonian mechanics, to illustrate the
power provided by exploiting the full hierarchy of stages available for applying variational principles to clas-
sical mechanics. Finally the book illustrates how variational principles in classical mechanics were exploited
during the development of both relativistic mechanics and quantum physics. The connections and applica-
tions of classical mechanics to modern physics, are emphasized throughout the book in an effort to span the
chasm that divides the Newtonian vector-differential formulation, and the integral variational formulation, of
classical mechanics. This chasm is especially applicable to quantum mechanics which is based completely on
variational principles. Note that variational principles, developed in the field of classical mechanics, now are
used in a diverse and wide range of fields outside of physics, including economics, meteorology, engineering,
and computing.

This study of classical mechanics involves climbing a vast mountain of knowledge, and the pathway to the
top leads to elegant and beautiful theories that underlie much of modern physics. This book exploits varia-
tional principles applied to four major topics in classical mechanics to illustrate the power and importance of
variational principles in physics. Being so close to the summit provides the opportunity to take a few extra
steps beyond the normal introductory classical mechanics syllabus to glimpse the exciting physics found at
the summit. This new physics includes topics such as quantum, relativistic, and statistical mechanics.



Chapter 1

A brief history of classical mechanics

1.1 Introduction

This chapter reviews the historical evolution of classical mechanics since considerable insight can be gained
from study of the history of science. There are two dramatically different approaches used in classical
mechanics. The first is the vectorial approach of Newton which is based on vector quantities like momentum,
force, and acceleration. The second is the analytical approach of Lagrange, Euler, Hamilton, and Jacobi,
that is based on the concept of least action and variational calculus. The more intuitive Newtonian picture
reigned supreme in classical mechanics until the start of the twentieth century. Variational principles, which
were developed during the nineteenth century, never aroused much enthusiasm in scientific circles due to
philosophical objections to the underlying concepts; this approach was merely tolerated as an efficient tool
for exploiting classical mechanics. A dramatic advance in the philosophy of science occurred at the start of
the 20" century leading to widespread acceptance of the superiority of using variational principles.

1.2 Greek antiquity

The great philosophers in ancient Greece played a key role by using the astronomical work of the Babylonians
to develop scientific theories of mechanics. Thales of Miletus (624 - 547BC), the first of the seven
great greek philosophers, developed geometry, and is hailed as the first true mathematician. Pythagorus
(570 - 495BC) developed mathematics, and postulated that the earth is spherical. Democritus (460 -
370BC) has been called the father of modern science, while Socrates (469 - 399BC) is renowned for his
contributions to ethics. Plato (427-347 B.C.) who was a mathematician and student of Socrates, wrote
important philosophical dialogues. He founded the Academy in Athens which was the first institution of
higher learning in the Western world that helped lay the foundations of Western philosophy and science.
Aristotle (384-322 B.C.) is an important founder of Western philosophy encompassing ethics, logic,
science, and politics. His views on the physical sciences profoundly influenced medieval scholarship that
extended well into the Renaissance. He presented the first implied formulation of the principle of virtual
work in statics, and his statement that “what is lost in velocity is gained in force” is a veiled reference to
kinetic and potential energy. He adopted an Earth centered model of the universe. Aristarchus (310 - 240
B.C.) argued that the Earth orbited the Sun and used measurements to imply the relative distances of the
Moon and the Sun. The greek philosophers were relatively advanced in logic and mathematics and developed
concepts that enabled them to calculate areas and perimeters. Unfortunately their philosophical approach
neglected collecting quantitative and systematic data that is an essential ingredient to the advancement of
science.

Archimedes (287-212 B.C.) represented the culmination of science in ancient Greece. As an engineer
he designed machines of war, while as a scientist he made significant contributions to hydrostatics and
the principle of the lever. As a mathematician, he applied infinitessimals in a way that is reminiscent of
modern integral calculus, which he used to derive a value for w. Unfortunately much of the work of the
brilliant Archimedes subsequently fell into oblivion. Hero of Alexandria (10 - 70 A.D.) described the
principle of reflection that light takes the shortest path. This is an early illustration of variational principle
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of least time. Ptolemy (83 - 161 A.D.) wrote several scientific treatises that greatly influenced subsequent
philosophers. Unfortunately he adopted the incorrect geocentric solar system in contrast to the heliocentric
model of Aristarchus and others.

1.3 Middle Ages

The decline and fall of the Roman Empire in ~410 A.D. marks the end of Classical Antiquity, and the
beginning of the Dark Ages in Western Europe (Christendom), while the Muslim scholars in Eastern Europe
continued to make progress in astronomy and mathematics. For example, in Egypt, Alhazen (965 - 1040
A.D.) expanded the principle of least time to reflection and refraction. The Dark Ages involved a long
scientific decline in Western Europe that languished for about 900 years. Science was dominated by religious
dogma, all western scholars were monks, and the important scientific achievements of Greek antiquity were
forgotten. The works of Aristotle were reintroduced to Western Europe by Arabs in the early 13" century
leading to the concepts of forces in static systems which were developed during the fourteenth century.
This included concepts of the work done by a force, and the virtual work involved in virtual displacements.
Leonardo da Vinci (1452-1519) was a leader in mechanics at that time. He made seminal contributions
to science, in addition to his well known contributions to architecture, engineering, sculpture, and art.

Nicolaus Copernicus (1473-1543) rejected the geocentric theory of Ptolomy and formulated a scientifically-
based heliocentric cosmology that displaced the Earth from the center of the universe. The Ptolomic view
was that heaven represented the perfect unchanging divine while the earth represented change plus chaos,
and the celestial bodies moved relative to the fixed heavens. The book, De revolutionibus orbium coelestium
(On the Revolutions of the Celestial Spheres), published by Copernicus in 1543, is regarded as the starting
point of modern astronomy and the defining epiphany that began the Scientific Revolution. The book De
Magnete written in 1600 by the English physician William Gilbert (1540-1603) presented the results of
well-planned studies of magnetism and strongly influenced the intellectual-scientific evolution at that time.

Johannes Kepler (1571-1630), a German mathematician, astronomer and astrologer, was a key
figure in the 17th century Scientific Revolution. He is best known for recognizing the connection between the
motions in the sky and physics. His laws of planetary motion were developed by later astronomers based on
his written work Astronomia nova, Harmonices Mundi, and Epitome of Copernican Astrononomy. Kepler
was an assistant to Tycho Brahe (1546-1601) who for many years recorded accurate astronomical data
that played a key role in the development of Kepler’s theory of planetary motion. Kepler’s work provided
the foundation for Isaac Newton’s theory of universal gravitation. Unfortunately Kepler did not recognize
the true nature of the gravitational force.

Galileo Galilei (1564-1642) built on the Aristotle principle by recognizing the law of inertia, the
persistence of motion if no forces act, and the proportionality between force and acceleration. This amounts
to recognition of work as the product of force times displacement in the direction of the force. He applied
virtual work to the equilibrium of a body on an inclined plane. He also showed that the same principle
applies to hydrostatic pressure that had been established by Archimedes, but he did not apply his concepts
in classical mechanics to the considerable knowledge base on planetary motion. Galileo is famous for the
apocryphal story that he dropped two cannon balls of different masses from the Tower of Pisa to demonstrate
that their speed of descent was independent of their mass.

1.4 Age of Enlightenment

The Age of Enlightenment is a term used to describe a phase in Western philosophy and cultural life in
which reason was advocated as the primary source and legitimacy for authority. It developed simultaneously
in Germany, France, Britain, the Netherlands, and Italy around the 1650’s and lasted until the French
Revolution in 1789. The intellectual and philosophical developments led to moral, social, and political
reforms. The principles of individual rights, reason, common sense, and deism were a revolutionary departure
from the existing theocracy, autocracy, oligarchy, aristocracy, and the divine right of kings. It led to political
revolutions in France and the United States. It marks a dramatic departure from the Early Modern period
which was noted for religious authority, absolute state power, guild-based economic systems, and censorship
of ideas. It opened a new era of rational discourse, liberalism, freedom of expression, and scientific method.
This new environment led to tremendous advances in both science and mathematics in addition to music,
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literature, philosophy, and art. Scientific development during the 17*" century included the pivotal advances

made by Newton and Leibniz at the beginning of the revolutionary Age of Enlightenment, culminating in the
development of variational calculus and analytical mechanics by Euler and Lagrange. The scientific advances
of this age include publication of two monumental books Philosophiae Naturalis Principia Mathematica by
Newton in 1687 and Mécanique analytique by Lagrange in 1788. These are the definitive two books upon
which classical mechanics is built.

René Descartes (1596-1650) attempted to formulate the laws of motion in 1644. He talked about
conservation of motion (momentum) in a straight line but did not recognize the vector character of momen-
tum. Pierre de Fermat (1601-1665) and René Descartes were two leading mathematicians in the first
half of the 17" century. Independently they discovered the principles of analytic geometry and developed
some initial concepts of calculus. Fermat and Blaise Pascal (1623-1662) were the founders of the theory
of probability.

Isaac Newton (1642-1727) made pioneering contributions to physics and mathematics as well as
being a theologian. At 18 he was admitted to Trinity College Cambridge where he read the writings of
modern philosophers like Descartes, and astronomers like Copernicus, Galileo, and Kepler. By 1665 he had
discovered the generalized binomial theorem, and began developing infinitessimal calculus. Due to a plague,
the university closed for two years in 1665 during which Newton worked at home developing the theory
of calculus that built upon the earlier work of Barrow and Descartes. He was elected Lucasian Professor
of Mathematics in 1669 at the age of 26. From 1670 Newton focussed on optics leading to his Hypothesis
of Light published in 1675 and his book Opticks in 1704. Newton described light as being made up of a
flow of extremely subtle corpuscles that also had associated wavelike properties to explain diffraction and
optical interference that he studied. Newton returned to mechanics in 1677 by studying planetary motion
and gravitation that applied the calculus he had developed. In 1687 he published his monumental treatise
entitled Philosophiae Naturalis Principia Mathematica which established his three universal laws of motion,
the universal theory of gravitation, derivation of Kepler’s three laws of planetary motion, and was his first
publication of the development of calculus which he called “the science of fluxions”. Newton’s laws of motion
are based on the concepts of force and momentum, that is, force equals the rate of change of momentum.
Newton’s postulate of an invisible force able to act over vast distances led him to be criticized for introducing
“occult agencies” into science. In a remarkable achievement, Newton completely solved the laws of mechanics.
His theory of classical mechanics and of gravitation reigned supreme until the development of the Theory
of Relativity in 1905. The followers of Newton envisioned the Newtonian laws to be absolute and universal.
This dogmatic reverence of Newtonian mechanics prevented physicists from an unprejudiced appreciation of
the analytic variational approach to mechanics developed during the 17t through 19" centuries. Newton
was the first scientist to be knighted and was appointed president of the Royal Society.

Gottfried Leibniz (1646-1716) was a brilliant German philosopher, a contemporary of Newton, who
worked on both calculus and mechanics. Leibniz started development of calculus in 1675, ten years after
Newton, but Leibniz published his work in 1684, which was three years before Newton’s Principia. Leibniz
made significant contributions to integral calculus and developed the notation currently used in calculus.
He introduced the name calculus based on the Latin word for the small stone used for counting. Newton
and Leibniz were involved in a protracted argument over who originated calculus. It appears that Leibniz
saw drafts of Newton’s work on calculus during a visit to England. Throughout their argument Newton
was the ghost writer of most of the articles in support of himself and he had them published under non-
de-plume of his friends. Leibniz made the tactical error of appealing to the Royal Society to intercede on
his behalf. Newton, as president of the Royal Society, appointed his friends to an “impartial” committee to
investigate this issue, then he wrote the committee’s report that accused Leibniz of plagiarism of Newton’s
work on calculus, after which he had it published by the Royal Society. Still unsatisfied he then wrote an
anonymous review of the report in the Royal Society’s own periodical. This bitter dispute lasted until the
death of Leibniz. When Leibniz died his work was largely discredited. The fact that he falsely claimed to be
a nobleman and added the prefix “von” to his name, coupled with Newton’s vitriolic attacks, did not help
his credibility. Newton is reported to have declared that he took great satisfaction in “breaking Leibniz’s
heart.” Studies during the 20" century have largely revived the reputation of Leibniz and he is recognized
to have made major contributions to the development of calculus.
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Figure 1.1: Chronological roadmap of the parallel development of the Newtonian and Variational-principles
approaches to classical mechanics.
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1.5 Variational methods in physics

Pierre de Fermat (1601-1665) revived the principle of least time, which states that light travels between
two given points along the path of shortest time and was used to derive Snell’s law in 1657. This enunciation
of variational principles in physics played a key role in the historical development of the variational principle
of least action that underlies the analytical formulations of classical mechanics.

Gottfried Leibniz (1646-1716) made significant contributions to the development of variational prin-
ciples in classical mechanics. In contrast to Newton’s laws of motion, which are based on the concept of
momentum, Leibniz devised a new theory of dynamics based on kinetic and potential energy that anticipates
the analytical variational approach of Lagrange and Hamilton. Leibniz argued for a quantity called the “vis
viva”, which is Latin for living force, that equals twice the kinetic energy. Leibniz argued that the change
in kinetic energy is equal to the work done. In 1687 Leibniz proposed that the optimum path is based on
minimizing the time integral of the vis viva, which is equivalent to the action integral. Leibniz used both
philosophical and causal arguments in his work which were acceptable during the Age of Enlightenment. Un-
fortunately for Leibniz, his analytical approach based on energies, which are scalars, appeared contradictory
to Newton’s intuitive vectorial treatment of force and momentum. There was considerable prejudice and
philosophical opposition to the variational approach which assumes that nature is thrifty in all of its actions.
The variational approach was considered to be speculative and “metaphysical” in contrast to the causal
arguments supporting Newtonian mechanics. This opposition delayed full appreciation of the variational
approach until the start of the 20" century.

Johann Bernoulli (1667-1748) was a Swiss mathematician who was a student of Leibniz’s calculus, and
sided with Leibniz in the Newton-Leibniz dispute over the credit for developing calculus. Also Bernoulli sided
with the Descartes’ vortex theory of gravitation which delayed acceptance of Newton’s theory of gravitation
in Europe. Bernoulli pioneered development of the calculus of variations by solving the problems of the
catenary, the brachistochrone, and Fermat’s principle. Johann Bernoulli’s son Daniel played a significant
role in the development of the well-known Bernoulli Principle in hydrodynamics.

Pierre Louis Maupertuis (1698-1759) was a student of Johann Bernoulli and conceived the universal
hypothesis that in nature there is a certain quantity called action which is minimized. Although this bold
assumption correctly anticipates the development of the variational approach to classical mechanics, he
obtained his hypothesis by an entirely incorrect method. He was a dilettante whose mathematical prowess
was behind the high standards of that time, and he could not establish satisfactorily the quantity to be
minimized. His teleological! argument was influenced by Fermat’s principle and the corpuscle theory of light
that implied a close connection between optics and mechanics.

Leonhard Euler (1707-1783) was the preeminent Swiss mathematician of the 18" century and was
a student of Johann Bernoulli. Euler developed, with full mathematical rigor, the calculus of variations
following in the footsteps of Johann Bernoulli. Euler used variational calculus to solve minimum/maximum
isoperimetric problems that had attracted and challenged the early developers of calculus, Newton, Leibniz,
and Bernoulli. Euler also was the first to solve the rigid-body rotation problem using the three components
of the angular velocity as kinematical variables. Euler became blind in both eyes by 1766 but that did not
hinder his prolific output in mathematics due to his remarkable memory and mental capabilities. Euler’s
contributions to mathematics are remarkable in quality and quantity; for example during 1775 he published
one mathematical paper per week in spite of being blind. FEuler implicitly implied the principle of least
action using vis visa which is not the exact form explicitly developed by Lagrange.

Jean le Rond d’Alembert (1717-1785) was a French mathematician and physicist who had the
clever idea of extending use of the principle of virtual work from statics to dynamics. d’Alembert’s Principle
rewrites the principle of virtual work in the form

N
> (Fi = pi)or; =0
i=1
where the inertial reaction force p is subtracted from the corresponding force F. This extension of the
principle of virtual work applies equally to both statics and dynamics leading to a single variational principle.
Joseph Louis Lagrange (1736-1813) was an Italian mathematician and a student of Leonhard Euler.
In 1788 Lagrange published his monumental treatise on analytical mechanics entitled Mécanique Analytique

ITeleology is any philosophical account that holds that final causes exist in nature, analogous to purposes found in human
actions, nature inherently tends toward definite ends.
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which introduces his Lagrangian mechanics analytical technique which is based on d’Alembert’s Principle of
Virtual Work. Lagrangian mechanics is a remarkably powerful technique that is equivalent to minimizing
the action integral S defined as
to
S = / Ldt
t1

The Lagrangian L frequently is defined to be the difference between the kinetic energy 7" and potential
energy V. His theory only required the analytical form of these scalar quantities. In the preface of his
book he refers modestly to his extraordinary achievements with the statement “The reader will find no
figures in the work. The methods which I set forth do not require either constructions or geometrical or
mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.”
Lagrange also introduced the concept of undetermined multipliers to handle auxiliary conditions which
plays a vital part of theoretical mechanics. William Hamilton, an outstanding figure in the analytical
formulation of classical mechanics, called Lagrange the “Shakespeare of mathematics,” on account of the
extraordinary beauty, elegance, and depth of the Lagrangian methods. Lagrange also pioneered numerous
significant contributions to mathematics. For example, Euler, Lagrange, and d’Alembert developed much of
the mathematics of partial differential equations. Lagrange survived the French Revolution, and, in spite of
being a foreigner, Napoleon named Lagrange to the Legion of Honour and made him a Count of the Empire
in 1808. Lagrange was honoured by being buried in the Pantheon.

Carl Friedrich Gauss (1777-1855) was a German child prodigy who made many significant contri-
butions to mathematics, astronomy and physics. He did not work directly on the variational approach, but
Gauss’s law, the divergence theorem, and the Gaussian statistical distribution are important examples of
concepts that he developed and which feature prominently in classical mechanics as well as other branches
of physics, and mathematics.

Simeon Poisson (1781-1840), was a brilliant mathematician who was a student of Lagrange. He
developed the Poisson statistical distribution as well as the Poisson equation that features prominently in
electromagnetic and other field theories. His major contribution to classical mechanics is development, in
1809, of the Poisson bracket formalism which featured prominently in development of Hamiltonian mechanics
and quantum mechanics.

The zenith in development of the variational approach to classical mechanics occurred during the 19"
century primarily due to the work of Hamilton and Jacobi.

William Hamilton (1805-1865) was a brilliant Irish physicist, astronomer and mathematician who was
appointed professor of astronomy at Dublin when he was barely 22 years old. He developed the Hamiltonian
mechanics formalism of classical mechanics which now plays a pivotal role in modern classical and quantum
mechanics. He opened an entirely new world beyond the developments of Lagrange. Whereas the Lagrange
equations of motion are complicated second-order differential equations, Hamilton succeeded in transforming
them into a set of first-order differential equations with twice as many variables that consider momenta and
their conjugate positions as independent variables. The differential equations of Hamilton are linear, have
separated derivatives, and represent the simplest and most desirable form possible for differential equations to
be used in a variational approach. Hence the name “canonical variables” given by Jacobi. Hamilton exploited
the d’Alembert principle to give the first exact formulation of the principle of least action which underlies the
variational principles used in analytical mechanics. The form derived by Euler and Lagrange employed the
principle in a way that applies only for conservative (scleronomic) cases. A significant discovery of Hamilton
is his realization that classical mechanics and geometrical optics can be handled from one unified viewpoint.
In both cases he uses a “characteristic” function that has the property that, by mere differentiation, the
path of the body, or light ray, can be determined by the same partial differential equations. This solution is
equivalent to the solution of the equations of motion.

Carl Gustave Jacob Jacobi (1804-1851), a Prussian mathematician and contemporary of Hamilton,
made significant developments in Hamiltonian mechanics. He immediately recognized the extraordinary im-
portance of the Hamiltonian formulation of mechanics. Jacobi developed canonical transformation theory
and showed that the function, used by Hamilton, is only one special case of functions that generate suit-
able canonical transformations. He proved that any complete solution of the partial differential equation,
without the specific boundary conditions applied by Hamilton, is sufficient for the complete integration of
the equations of motion. This greatly extends the usefulness of Hamilton’s partial differential equations.
In 1843 Jacobi developed both the Poisson brackets, and the Hamilton-Jacobi, formulations of Hamiltonian
mechanics. The latter gives a single, first-order partial differential equation for the action function in terms
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of the n generalized coordinates which greatly simplifies solution of the equations of motion. He also de-
rived a principle of least action for time-independent cases that had been studied by Euler and Lagrange.
Jacobi developed a superior approach to the variational integral that, by eliminating time from the integral,
determined the path without saying anything about how the motion occurs in time.

James Clerk Maxwell (1831-1879) was a Scottish theoretical physicist and mathematician. His most
prominent achievement was formulating a classical electromagnetic theory that united previously unrelated
observations, plus equations of electricity, magnetism and optics, into one consistent theory. Maxwell’s
equations demonstrated that electricity, magnetism and light are all manifestations of the same phenomenon,
namely the electromagnetic field. Consequently, all other classic laws and equations of electromagnetism
were simplified cases of Maxwell’s equations. Maxwell’s achievements concerning electromagnetism have
been called the “second great unification in physics”. Maxwell demonstrated that electric and magnetic
fields travel through space in the form of waves, and at a constant speed of light. In 1864 Maxwell wrote “A
Dynamical Theory of the Electromagnetic Field” which proposed that light was in fact undulations in the
same medium that is the cause of electric and magnetic phenomena. His work in producing a unified model
of electromagnetism is one of the greatest advances in physics. Maxwell, in collaboration with Ludwig
Boltzmann (1844-1906), also helped develop the Maxwell-Boltzmann distribution, which is a statistical
means of describing aspects of the kinetic theory of gases. These two discoveries helped usher in the era of
modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Boltzmann
founded the field of statistical mechanics and was an early staunch advocate of the existence of atoms and
molecules.

Henri Poincaré (1854-1912) was a French theoretical physicist and mathematician. He was the first to
present the Lorentz transformations in their modern symmetric form and discovered the remaining relativistic
velocity transformations. Although there is similarity to Einstein’s Special Theory of Relativity, Poincaré and
Lorentz still believed in the concept of the ether and did not fully comprehend the revolutionary philosophical
change implied by Einstein. Poincaré worked on the solution of the three-body problem in planetary motion
and was the first to discover a chaotic deterministic system which laid the foundations of modern chaos
theory. It rejected the long-held deterministic view that if the position and velocities of all the particles are
known at one time, then it is possible to predict the future for all time.

The last two decades of the 19" century saw the culmination of classical physics and several important
discoveries that led to a revolution in science that toppled classical physics from its throne. The end of the
19" century was a time during which tremendous technological progress occurred; flight, the automobile,
and turbine-powered ships were developed, Niagara Falls was harnessed for power, etc. During this period,
Heinrich Hertz (1857-1894) produced electromagnetic waves confirming their derivation using Maxwell’s
equations. Simultaneously he discovered the photoelectric effect which was crucial evidence in support of
quantum physics. Technical developments, such as photography, the induction spark coil, and the vacuum
pump played a significant role in scientific discoveries made during the 1890’s. At the end of the 19*" century,
scientists thought that the basic laws were understood and worried that future physics would be in the fifth
decimal place; some scientists worried that little was left for them to discover. However, there remained a
few, presumed minor, unexplained discrepancies plus new discoveries that led to the revolution in science
that occurred at the beginning of the 20" century.

1.6 The 20" century revolution in physics

The two greatest achievements of modern physics occurred at the beginning of the 20*" century. The first
was Finstein’s development of the Theory of Relativity; the Special Theory of Relativity in 1905 and the
General Theory of Relativity in 1915. This was followed in 1925 by the development of quantum mechanics.

Albert Einstein (1879-1955) developed the Special Theory of Relativity in 1905 and the General The-
ory of Relativity in 1915; both of these revolutionary theories had a profound impact on classical mechanics
and the underlying philosophy of physics. The Newtonian formulation of mechanics was shown to be an
approximation that applies only at low velocities, while the General Theory of Relativity superseded New-
ton’s Law of Gravitation and explained the Equivalence Principle. The Newtonian concepts of an absolute
frame of reference, plus the assumption of the separation of time and space, were shown to be invalid at
relativistic velocities. Einstein’s postulate that the laws of physics are the same in all inertial frames requires
a revolutionary change in the philosophy of time, space and reference frames which leads to a breakdown
in the Newtonian formalism of classical mechanics. By contrast, the Lagrange and Hamiltonian variational
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formalisms of mechanics, plus the principle of least action, remain intact using a relativistically invariant
Lagrangian. The independence of the variational approach to reference frames is precisely the formalism
necessary for relativistic mechanics. The invariance to coordinate frames of the basic field equations also
must remain invariant for the General Theory of Relativity which also can be derived in terms of a rela-
tivistic action principle. Thus the development of the Theory of Relativity unambiguously demonstrated the
superiority of the variational formulation of classical mechanics over the vectorial Newtonian formulation,
and thus the considerable effort made by Euler, Lagrange, Hamilton, Jacobi, and others in developing the
analytical variational formalism of classical mechanics finally came to fruition at the start of the 20" century.
Newton’s two crowning achievements, the Laws of Motion and the Laws of Gravitation, that had reigned
supreme since published in the Principia in 1687, were toppled from the throne by Einstein.

Emmy Noether (1882-1935) has been described as “the greatest ever woman mathematician”. In
1915 she proposed a theorem that a conservation law is associated with any differentiable symmetry of a
physical system. Noether’s theorem evolves naturally from Lagrangian and Hamiltonian mechanics and
she applied it to the four-dimensional world of general relativity. Noether’s theorem has had an important
impact in guiding the development of modern physics.

Other profound developments that had revolutionary impacts on classical mechanics were quantum
physics and quantum field theory. The 1913 model of atomic structure by Niels Bohr (1885-1962) and
the subsequent enhancements by Arnold Sommerfeld (1868-1951), were based completely on classical
Hamiltonian mechanics. The proposal of wave-particle duality by Louis de Broglie (1892-1987), made
in his 1924 thesis, was the catalyst leading to the development of quantum mechanics. In 1925 Werner
Heisenberg (1901-1976), and Max Born (1882-1970) developed a matrix representation of quantum
mechanics using non-commuting conjugate position and momenta variables.

Paul Dirac (1902-1984) showed in his Ph.D. thesis that Heisenberg’s matrix representation of quantum
physics is based on the Poisson Bracket generalization of Hamiltonian mechanics, which, in contrast to
Hamilton’s canonical equations, allows for non-commuting conjugate variables. In 1926 Erwin Schrédinger
(1887-1961) independently introduced the operational viewpoint and reinterpreted the partial differential
equation of Hamilton-Jacobi as a wave equation. His starting point was the optical-mechanical analogy of
Hamilton that is a built-in feature of the Hamilton-Jacobi theory. Schrédinger then showed that the wave
mechanics he developed, and the Heisenberg matrix mechanics, are equivalent representations of quantum
mechanics. In 1928 Dirac developed his relativistic equation of motion for the electron and pioneered the
field of quantum electrodynamics. Dirac also introduced the Lagrangian and the principle of least action to
quantum mechanics, and these ideas were developed into the path-integral formulation of quantum mechanics
and the theory of electrodynamics by Richard Feynman(1918-1988).

The concepts of wave-particle duality, and quantization of observables, both are beyond the classical
notions of infinite subdivisions in classical physics. In spite of the radical departure of quantum mechanics
from earlier classical concepts, the basic feature of the differential equations of quantal physics is their self-
adjoint character which means that they are derivable from a variational principle. Thus both the Theory of
Relativity, and quantum physics are consistent with the variational principle of mechanics, and inconsistent
with Newtonian mechanics. As a consequence Newtonian mechanics has been dislodged from the throne
it occupied since 1687, and the intellectually beautiful and powerful variational principles of analytical
mechanics have been validated.

The 2015 observation of gravitational waves is a remarkable recent confirmation of Einstein’s General
Theory of Relativity and the validity of the underlying variational principles in physics. Another advance in
physics is the understanding of the evolution of chaos in non-linear systems that have been made during the
past four decades. This advance is due to the availability of computers which has reopened this interesting
branch of classical mechanics, that was pioneered by Henri Poincaré about a century ago. Although classical
mechanics is the oldest and most mature branch of physics, there still remain new research opportunities in
this field of physics.

The focus of this book is to introduce the general principles of the mathematical variational principle
approach, and its applications to classical mechanics. It will be shown that the variational principles, that
were developed in classical mechanics, now play a crucial role in modern physics and mathematics, plus
many other fields of science and technology.

References:

Excellent sources of information regarding the history of major players in the field of classical mechanics
can be found on Wikipedia, and the book “Variational Principle of Mechanics” by Lanczos.[La49]



Chapter 2

Review of Newtonian mechanics

2.1 Introduction

It is assumed that the reader has been introduced to Newtonian mechanics applied to one or two point objects.
This chapter reviews Newtonian mechanics for motion of many-body systems as well as for macroscopic
sized bodies. Newton’s Law of Gravitation also is reviewed. The purpose of this review is to ensure that the
reader has a solid foundation of elementary Newtonian mechanics upon which to build the powerful analytic
Lagrangian and Hamiltonian approaches to classical dynamics.

Newtonian mechanics is based on application of Newton’s Laws of motion which assume that the concepts
of distance, time, and mass, are absolute, that is, motion is in an inertial frame. The Newtonian idea of
the complete separation of space and time, and the concept of the absoluteness of time, are violated by the
Theory of Relativity as discussed in chapter 17. However, for most practical applications, relativistic effects
are negligible and Newtonian mechanics is an adequate description at low velocities. Therefore chapters
2 — 16 will assume velocities for which Newton’s laws of motion are applicable.

2.2 Newton’s Laws of motion

Newton defined a vector quantity called linear momentum p which is the product of mass and velocity.
p =mi (2.1)

Since the mass m is a scalar quantity, then the velocity vector I and the linear momentum vector p are
colinear.

Newton’s laws, expressed in terms of linear momentum, are:

1 Law of inertia: A body remains at rest or in uniform motion unless acted upon by a force.

2 Equation of motion: A body acted upon by a force moves in such a manner that the time rate of change
of momentum equals the force. p

p
F= I (2.2)

3 Action and reaction: If two bodies exert forces on each other, these forces are equal in magnitude and
opposite in direction.

Newton’s second law contains the essential physics relating the force F and the rate of change of linear
momentum p.

Newton’s first law, the law of inertia, is a special case of Newton’s second law in that if

_dp _

F= = 2.
o =V (2.3)

then p is a constant of motion.
Newton’s third law also can be interpreted as a statement of the conservation of momentum, that is, for
a two particle system with no external forces acting,

F12 = *Fgl (24)

9



10 CHAPTER 2. REVIEW OF NEWTONIAN MECHANICS

If the forces acting on two bodies are their mutual action and reaction, then equation 2.4 simplifies to

d d d
F12+F21=%+%:£(P1+P2):0 (2.5)

This implies that the total linear momentum (P = p; + p2) is a constant of motion.
Combining equations 2.1 and 2.2 leads to a second-order differential equation
’r

F:Cfi—?:m%:mi‘ (2.6)
Note that the force on a body F, and the resultant acceleration a =t are colinear. Appendix C2 gives
explicit expressions for the acceleration a in cartesian and curvilinear coordinate systems. The definition of
force depends on the definition of the mass m. Newton’s laws of motion are obeyed to a high precision for
velocities much less than the velocity of light. For example, recent experiments have shown they are obeyed
with an error in the acceleration of Aa <5 x 10~ *m/s2.

2.3 Inertial frames of reference

An inertial frame of reference is one in which Newton’s Laws of
motion are valid. It is a non-accelerated frame of reference. An
inertial frame must be homogeneous and isotropic. Physical ex-
periments can be carried out in different inertial reference frames.
The Galilean transformation provides a means of converting be-
tween two inertial frames of reference moving at a constant rel-
ative velocity. Consider two reference frames O and O" with O’
moving with constant velocity V at time t. Figure 2.1 shows a
Galilean transformation which can be expressed in vector form.

r = r—Vit (2.7)
¢ =t
Equation 2.7 gives the boost, assuming Newton’s hypothesis
that the time is invariant to change of inertial frames of reference.
The time differential of this transformation gives
Vo= -V (2.8)
oo o Figure 2.1: Frame O’ moving with a con-

¥o= ¥t
stant velocity V with respect to frame O
Note that the forces in the primed and unprimed inertial frames ¢ the time ¢.

are related by

F= Ccll_It) = mi =mi’ = F/ (2.9)
Thus Newton’s Laws of motion are invariant under a Galilean transformation, that is, the inertial mass is
unchanged under Galilean transformations. If Newton’s laws are valid in one inertial frame of reference,
then they are valid in any frame of reference in uniform motion with respect to the first frame of reference.
This invariance is called Galilean invariance. There are an infinite number of possible inertial frames all
connected by Galilean transformations.

Galilean invariance violates Einstein’s Theory of Relativity. In order to satisfy Einstein’s postulate
that the laws of physics are the same in all inertial frames, as well as satisfy Maxwell’s equations for
electromagnetism, it is necessary to replace the Galilean transformation by the Lorentz transformation. As
will be discussed in chapter 17, the Lorentz transformation leads to Lorentz contraction and time dilation both
of which are related to the parameter v = \/#—v)? where c is the velocity of light in vacuum. Fortunately,
most situations in life involve velocities where v << ¢; for example, for a body moving at 25,000m.p.h.
(11,111 m/s) which is the escape velocity for a body at the surface of the earth, the v factor differs from
unity by about 6.82107'% which is negligible. Relativistic effects are significant only in nuclear and particle
physics as well as some exotic conditions in astrophysics. Thus, for the purpose of classical mechanics,
usually it is reasonable to assume that the Galilean transformation is valid and is well obeyed under most
practical conditions.



2.4. FIRST-ORDER INTEGRALS IN NEWTONIAN MECHANICS 11

2.4 First-order integrals in Newtonian mechanics

A fundamental goal of mechanics is to determine the equations of motion for an n—body system, where
the force F; acts on the individual mass m; where 1 < ¢ < n. Newton’s second-order equation of motion,
equation 2.6 must be solved to calculate the instantaneous spatial locations, velocities, and accelerations for
each mass m; of an n-body system. Both F; and ¥; are vectors, each having three orthogonal components.
The solution of equation 2.6 involves integrating second-order equations of motion subject to a set of initial
conditions. Although this task appears simple in principle, it can be exceedingly complicated for many-body
systems. Fortunately, solution of the motion often can be simplified by exploiting three first-order integrals
of Newton’s equations of motion, that are related directly to conservation of either the linear momentum,
angular momentum, or energy of the system. In addition, for the special case of these three first-order
integrals, the internal motion of any many-body system can be factored out by a simple transformations into
the center of mass of the system. As a consequence, the following three first-order integrals are exploited
extensively in classical mechanics.

2.4.1 Linear Momentum

Newton’s Laws can be written as the differential and integral forms of the first-order time integral which
equals the change in linear momentum. That is

F, — dpi / F,dt = / dpi )y _ (P2 — P1); (2.10)
1 1

dt dt

This allows Newton’s law of motion to be expressed directly in terms of the linear momentum p; = m;1; of
each of the 1 < 4 < m bodies in the system. This first-order time integral features prominently in classical
mechanics since it connects to the important concept of linear momentum p. This first-order time integral
gives that the total linear momentum is a constant of motion when the sum of the external forces is zero.

2.4.2 Angular momentum

The angular momentum L; of a particle ¢ with linear momentum p; with respect to an origin from which
the position vector r; is measured, is defined by

The torque, or moment of the force N; with respect to the same origin is defined to be
Ni =r; X Fl (212)

where r; is the position vector from the origin to the point where the force F; is applied. Note that the
torque IN; can be written as

dpi
N; =r; 2.13
X — (2.13)
Consider the time differential of the angular momentum, d(};i
dLi d dI‘i dpi
= —(r; X pi) = i T 2.14
TR TACAE L il (2.14)
However,
dI‘i dri dI‘i
i = 2.1
a “Pi= g Xy =0 (2.15)

Equations 2.13 — 2.15 can be used to write the first-order time integral for angular momentum in either
differential or integral form as

dL; dp; 2 2 dL;
=r; X P = Nl / Nldt = / dt = (LQ — Ll)z (216)
1 1

dt dt dt

Newton’s Law relates torque and angular momentum about the same axis. When the torque about any axis
is zero then angular momentum about that axis is a constant of motion. If the total torque is zero then the
total angular momentum, as well as the components about three orthogonal axes, all are constants.
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2.4.3 Kinetic energy

The third first-order integral, that can be used for solving the equations of motion, is the first-order spatial
integral ff F,; - dr;. Note that this spatial integral is a scalar in contrast to the first-order time integrals for
linear and angular momenta which are vectors. The work done on a mass m; by a force F; in transforming
from condition 1 to 2 is defined to be

2
[Whal; = / F;-dr; (2.17)
1
If F; is the net resultant force acting on a particle 7, then the integrand can be written as
dpl dVi dI‘i dVi m; d 1 2
F, -dr; = ~dr; =m; c—dt=m;—— - vidt = —— (v; - vy)dt =d | =myv; | =d[T], 2.1
T T e T Y TR (2”“’1) 7l (218)

where the kinetic energy of a particle 7 is defined as

1
[T), = imﬂ}? (2.19)
Thus the work done on the particle 4, that is, [Wi2], equals the change in kinetic energy of the particle if

there is no change in other contributions to the total energy such as potential energy, heat dissipation, etc.
That is

1 1
[Wia], = [§mv§ - Emvﬂ =[T» - T, (2.20)
Thus the differential, and corresponding first integral, forms of the kinetic energy can be written as
dT; 2
dr; 1

If the work done on the particle is positive, then the final kinetic energy T > T;. Especially noteworthy is that
the kinetic energy [T7, is a scalar quantity which makes it simple to use. This first-order spatial integral is the
foundation of the analytic formulation of mechanics that underlies Lagrangian and Hamiltonian mechanics.

2.5 Conservation laws in classical mechanics

Elucidating the dynamics in classical mechanics is greatly simplified when conservation laws are applicable.
In nature, isolated many-body systems frequently conserve one or more of the first-order integrals for linear
momentum, angular momentum, and mass/energy. Note that mass and energy are coupled in the Theory
of Relativity, but for non-relativistic mechanics the conservation of mass and energy are decoupled. Other
observables such as lepton and baryon numbers are conserved, but these conservation laws usually can be
subsumed under conservation of mass for most problems in non-relativistic classical mechanics. The power
of conservation laws in calculating classical dynamics makes it useful to combine the conservation laws
with the first integrals for linear momentum, angular momentum, and work-energy, when solving problems
involving Newtonian mechanics. These three conservation laws will be derived assuming Newton’s laws of
motion, however, these conservation laws are fundamental laws of nature that apply well beyond the domain
of applicability of Newtonian mechanics.

2.6 Motion of finite-sized and many-body systems

Elementary presentations in classical mechanics discuss motion and forces involving single point particles.
However, in real life, single bodies have a finite size introducing new degrees of freedom such as rotation and
vibration, and frequently many finite-sized bodies are involved. A finite-sized body can be thought of as a
system of interacting particles such as the individual atoms of the body. The interactions between the parts
of the body can be strong which leads to rigid body motion where the positions of the particles are held
fixed with respect to each other, and the body can translate and rotate. When the interaction between the
bodies is weaker, such as for a diatomic molecule, additional vibrational degrees of relative motion between
the individual atoms are important. Newton’s third law of motion becomes especially important for such
many-body systems.
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2.7 Center of mass of a many-body system

A finite sized body needs a reference point with respect
to which the motion can be described. For example,
there are 8 corners of a cube that could server as ref-
erence points, but the motion of each corner is compli-
cated if the cube is both translating and rotating. The
treatment of the behavior of finite-sized bodies, or many-
body systems, is greatly simplified using the concept of R
center of mass. The center of mass is a particular fixed
point in the body that has an especially valuable prop-
erty; that is, the translational motion of a finite sized
body can be treated like that of a point mass located at Tr
the center of mass. In addition the translational motion
is separable from the rotational-vibrational motion of a
many-body system when the motion is described with
respect to the center of mass. Thus it is convenient at
this juncture to introduce the concept of center of mass
of a many-body system.

For a many-body system, the position vector r;, de-
fined relative to the laboratory system, is related to the Figure 2.2: Position vector with respect to the
position vector r} with respect to the center of mass, and center of mass.
the center-of-mass location R relative to the laboratory
system. That is, as shown in figure 2.2

ri=R+r} (2.22)

This vector relation defines the transformation between the laboratory and center of mass systems. For
discrete and continuous systems respectively, the location of the center of mass is uniquely defined as being
where

Z m;r; = /r'pdV =0. (Center of mass definition)

Define the total mass M as
M= Zmi = / pdV (Total mass)
i body

The average location of the system corresponds to the location of the center of mass since ﬁ >, mari =0,
that is ) )
K3 1

The vector R, which describes the location of the center of mass, depends on the origin and coordinate
system chosen. For a continuous mass distribution the location vector of the center of mass is given by

1 1
R= i zi:miri = /rpdV (2.24)

The center of mass can be evaluated by calculating the individual components along three orthogonal axes.

The center-of-mass frame of reference is defined as the frame for which the center of mass is stationary.
This frame of reference is especially valuable for elucidating the underlying physics which involves only the
relative motion of the many bodies. That is, the trivial translational motion of the center of mass frame,
which has no influence on the relative motion of the bodies, is factored out and can be ignored. For example,
a tennis ball (0.06kg) approaching the earth (6 x 10>*kg) with velocity v could be treated in three frames,
(a) assume the earth is stationary, (b) assume the tennis ball is stationary, or (c¢) the center-of-mass frame.
The latter frame ignores the center of mass motion which has no influence on the relative motion of the
tennis ball and the earth. The center of linear momentum and center of mass coordinate frames are identical
in Newtonian mechanics but not in relativistic mechanics as described in chapter 17.4.3.
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2.8 Total linear momentum of a many-body system

2.8.1 Center-of-mass decomposition

The total linear momentum P for a system of n particles is given by

n d n
P= Z P = E Z m;r; (225)
It is convenient to describe a many-body system by a position vector r; with respect to the center of mass.
LR (2.26)
That is,
P—i -—iim-r-—iMR—I—iim-r’—iMR—i—O—MR (2.27)
R T T T - '
since > m;r} = 0 as given by the definition of the center of mass. That is;
P=MR (2.28)

Thus the total linear momentum for a system is the same as the momentum of a single particle of mass
M = >""m; located at the center of mass of the system.

2.8.2 Equations of motion

The force acting on particle 4, in an n-particle many-body system, can be separated into an external force
FE=t plus internal forces f;; between the n particles of the system
n
F,=F+> f (2.29)
iij

The origin of the external force is from outside of the system while the internal force is due to the mutual
interaction between the n particles in the system. Newton’s Law tells us that

pi=F; =F] + Z fi; (2.30)
l?jfj
Thus the rate of change of total momentum is
P=>"pi=> FF+> > f; (2.31)
Note that since the indices are dummy then
n n
YD E= > (2.32)
' Z;Jﬁj g z;'fj
Substituting Newton’s third law f;; = —f}; into equation 2.32 implies that

szijzzzfﬁ:*zzfu:() (2.33)

%

7 7
i#] i#j i#]
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which is satisfied only for the case where the summations equal zero. That is, for every internal force, there
is an equal and opposite reaction force that cancels that internal force.

Therefore the first-order integral for linear momentum can be written in differential and integral forms
as

n 2 n
P=>"F’ /ZFfdt =P, - P, (2.34)
7 1 7

The reaction of a body to an external force is equivalent to a single particle of mass M located at the center
of mass assuming that the internal forces cancel due to Newton’s third law.
Note that the total linear momentum P is conserved if the net external force F¥ is zero, that is

dP
FP=—=0

== - (2.35)

Therefore the P of the center of mass is a constant. Moreover, if the component of the force along any

direction € is zero, that is,

dP -e
dt

then P - € is a constant. This fact is used frequently to solve problems involving motion in a constant force
field. For example, in the earth’s gravitational field, the momentum of an object moving in vacuum in the
vertical direction is time dependent because of the gravitational force, whereas the horizontal component of
momentum is constant if no forces act in the horizontal direction.

FF.e=

=0 (2.36)

2.1 Example: Exploding cannon shell

Consider a cannon shell of mass M moves along a parabolic trajectory in the earths gravitational field.
An internal explosion, generating an amount E of mechanical energy, blows the shell into two parts. One
part of mass kM, where k < 1, continues moving along the same trajectory with velocity v' while the other
part is reduced to rest. Find the velocity of the mass kM immediately after the explosion.

It is important to remember that the energy release E is given in
the center of mass. If the velocity of the shell immediately before the

explosion is v and v’ is the velocity of the kM part immediately after the T~ //
explosion, then energy conservation gives that %]\41}2 +E = %ka'QT . /\i
The conservation of linear momentum gives Mv = kMv'. Eliminating /// \ N,

v from these equations gives o

2F
[k = R)M] A

Exploding cannon shell
2.2 Example: Billiard-ball collisions

A billiard ball with mass m and incident velocity v collides with an identical stationary ball. Assume that
the balls bounce off each other elastically in such a way that the incident ball is deflected at a scattering angle
0 to the incident direction. Calculate the final velocities vy and Vy of the two balls and the scattering angle
¢ of the target ball. The conservation of linear momentum in the incident direction x, and the perpendicular
direction give

mv = muvy cos § +mVy cos ¢ 0 =muvysing — mVysing
Energy conservation gives .
m o _ M o Mo
EU = EUf + EVf

Solving these three equations gives ¢ = 900 — 0, that is, the balls bounce off perpendicular to each other in
the laboratory frame. The final velocities are

v =vcosl Vi =wvsinf
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2.9 Angular momentum of a many-body system

2.9.1 Center-of-mass decomposition

As was the case for linear momentum, for a many-body system it is possible to separate the angular mo-
mentum into two components. One component is the angular momentum about the center of mass and the
other component is the angular motion of the center of mass about the origin of the coordinate system. This
separation is done by describing the angular momentum of a many-body system using a position vector r;
with respect to the center of mass plus the vector location R of the center of mass.

r, = R+ I‘g (237)

The total angular momentum

L = iLi:iriXpi
K3 K]

= i(R—&—r;—) X M (R—&—r;)

7

= Zmi{r;xfg+r;xR+Rxf§+RxR] (2.38)

Note that if the position vectors are with respect to the center of mass, then ZZL m;r; = 0 resulting in the
middle two terms in the bracket being zero, that is;

L=> r,xp,+RxP (2.39)
A

The total angular momentum separates into two terms, the angular momentum about the center of mass,
plus the angular momentum of the center of mass about the origin of the axis system. This factoring of the
angular momentum only applies for the center of mass. This is called Samuel Kénig’s first theorem.

2.9.2 Equations of motion

The time derivative of the angular momentum

. d
Li = Eri X Pp; = f‘i X P; “+r; X f)l (240)
But

Thus the torque N; acting on mass ¢ is given by
Nz' = Li =r; X I.)i =r; X Fz‘ (242)

Consider that the resultant force acting on particle 4 in this n-particle system can be separated into an
external force FE*? plus internal forces between the n particles of the system

F,=F/+> f; (2.43)
igéj

The origin of the external force is from outside of the system while the internal force is due to the interaction
with the other n — 1 particles in the system. Newton’s Law tells us that

pi=F, =F+ Z f;; (2.44)

i#£]



2.9. ANGULAR MOMENTUM OF A MANY-BODY SYSTEM 17

The rate of change of total angular momentum is

L:ZI.Jl:ZI'ZXI.)Z:ZI‘1XF1E+ZZI‘ZXfU (245)

J
i#]

Since f;; = —f;; the last expression can be written as

DD rix Z Z —r;) x fi; (2.46)
Yy i%
Note that (r; —r;) is the vector r;; connecting j to i. For central forces the force vector f;; = f;;r;; thus
Z Z — I‘j X f” = erij X f”f; =0 (247)

’L<j ’ 1<j

That is, for central internal forces the total internal torque on a system of particles is zero, and the rate of
change of total angular momentum for central internal forces becomes

L= ZerFE ZNE (2.48)

where N¥ is the net external torque acting on the system. Equation 2.48 leads to the differential and integral
forms of the first integral relating the total angular momentum to total external torque.
2
L=NF / NPt =Ly, — Ly (2.49)
1

Angular momentum conservation occurs in many problems involving zero external torques N¥ = 0, plus
two-body central forces F =f(r)t since the torque on the particle about the center of the force is zero

N=rxF=f(r)[r x#] =0 (2.50)

Examples are, the central gravitational force for stellar or planetary systems in astrophysics, and the central
electrostatic force manifest for motion of electrons in the atom. In addition, the component of angular
momentum about any axis L.& is conserved if the net external torque about that axis IN.é =0.

2.3 Example: Bolas thrown by gaucho 7

Consider the bolas thrown by a gaucho to catch cattle. This is a
system with conserved linear and angular momentum about certain
azxes. When the bolas leaves the gaucho’s hand the center of mass
has a linear velocity V plus an angular momentum about the center

of mass of L. If no external torques act, then the center of mass of
the bolas will follow a typical ballistic trajectory in the earth’s grav-
itational field while the angular momentum vector L is conserved,
that is, both in magnitude and direction. The tension in the Topes
connecting the three balls does not impact the motion of the system
as long as the ropes do not snap due to centrifugal forces.

Bolas thrown by a gaucho
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2.10 Work and kinetic energy for a many-body system

2.10.1 Center-of-mass kinetic energy

For a many-body system the position vector r} with respect to the center of mass is given by.
ri=R+r, (2.51)

The location of the center of mass is uniquely defined as being at the location where [ pridV = 0. The
velocity of the i*" particle can be expressed in terms of the velocity of the center of mass R plus the velocity
of the particle with respect to the center of mass 1, . That is,

i =R+ (2.52)

The total kinetic energy T is

T = z": %mw? = Zn: %mzr, T = Zn: %mlr; P+ (% Zmﬂ‘i) R+ Z %mzR ‘R (2.53)
i i i i i

For the special case of the center of mass, the middle term is zero since, by definition of the center of mass,
>, m;ti = 0. Therefore

"1 1

Thus the total kinetic energy of the system is equal to the sum of the kinetic energy of a mass M moving
with the center of mass velocity plus the kinetic energy of motion of the individual particles relative to the
center of mass. This is called Samuel Konig’s second theorem.

Note that for a fixed center-of-mass energy, the total kinetic energy 7' has a minimum value of " %miv?
when the velocity of the center of mass V' = 0. For a given internal excitation energy, the minimum energy
required to accelerate colliding bodies occurs when the colliding bodies have identical, but opposite, linear
momenta. That is, when the center-of-mass velocity V' = 0.

2.10.2 Conservative forces and potential energy

In general, the line integral of a force field F, that is, ff F.dr, is both path and time dependent. However,
an important class of forces, called conservative forces, exist for which the following two facts are obeyed.

1) Time independence:

The force depends only on the particle position r, that is, it does not depend on velocity or time.

2) Path independence:

For any two points 1 and 2, the work done by F is independent of the path taken between 1 and 2.

If forces are path independent, then it is possible to define a scalar field, called potential energy, denoted
by U(r), that is only a function of position. The path independence can be expressed by noting that the
integral around a closed loop is zero. That is

wau:o (2.55)

Applying Stokes theorem for a path-independent force leads to the alternate statement that the curl is zero.
See appendix G3.3.
V xF=0. (2.56)

Note that the vector product of two del operators V acting on a scalar field U equals
VxVU=0 (2.57)
Thus it is possible to express a path-independent force field as the gradient of a scalar field, U, that is

F=-VU (2.58)
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Then the spatial integral
2 2
/F-dr:—/(VU)-dr:Ul—Ug (2.59)
1 1

Thus for a path-independent force, the work done on the particle is given by the change in potential energy
if there is no change in kinetic energy. For example, if an object is lifted against the gravitational field, then
work is done on the particle and the final potential energy Us exceeds the initial potential energy, U;.

2.10.3 Total mechanical energy

The total mechanical energy F of a particle is defined as the sum of the kinetic and potential energies.
E=T+U (2.60)

Note that the potential energy is defined only to within an additive constant since the force F = —VU
depends only on difference in potential energy. Similarly, the kinetic energy is not absolute since any inertial
frame of reference can be used to describe the motion and the velocity of a particle depends on the relative
velocities of inertial frames. Thus the total mechanical energy £ =T 4 U is not absolute.
If a single particle is subject to several path-independent forces, such as gravity, linear restoring forces,
etc., then a potential energy U, can be ascribed to each of the m forces where for each force F; = —VU;. In
m

contrast to the forces, which add vectorially, these scalar potential energies are additive, U = Z U;. Thus
i
the total mechanical energy for m potential energies equals

E=T+U(r T+§:U (2.61)

The time derivative of the total mechanical energy £ =T + U, equals

de. _dT'  dU
— 2.62
@ d T a (2.62)
Equation 2.18 gave that d1' = F - dr. Thus, the first term in equation 2.62 equals
dr dr
Z _F. = 2.
dt dt (2.63)

The potential energy can be a function of both position and time. Thus the time difference in potential
energy due to change in both time and position is given as

oU dxz BU dr 8U
ox; dt =VU) -5 875

(2.64)

The time derivative of the total mechanical energy is given using equations 2.63,2.64 in equation 2.62.

dE  dT' dU dr dr 0U dr ou
%—Eﬁ-%—l‘? EJF(VU) _+E [F+(VU)]-— 5

Note that if the field is path independent, that is V x F = 0, then the force and potential are related by

(2.65)

F=-VU (2.66)

Therefore, for path independent forces, the first term in the time derivative of the total energy in equation
2.65 is zero. That is,

dE  oU

—_— == 2.67

dt ot ( )
In addition, when the potential energy U is not an explicit function of time, then %[t] = 0 and thus the total

energy is conserved. That is, for the combination of (a) path independence plus (b) time independence, then
the total energy of a conservative field is conserved.
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Note that there are cases where the concept of potential still is useful even when it is time dependent.
That is, if path independence applies, i.e. F = —VU at any instant. For example, a Coulomb field problem
where charges are slowly changing due to leakage etc., or during a peripheral collision between two charged
bodies such as nuclei.

2.4 Example: Central force

A particle of mass m mowves along a trajectory given by x = xgcoswit and y = yo sinwot.

a) Find the = and y components of the force and determine the condition for which the force is a central
force.

Differentiating with respect to time gives

& = —xowssin(wit) & = —xow? cos (wit)
U = —yowscos (wat) i = —yow3 sin (wat)
Newton’s second law gives
F=m (21+§j]) = —m [zow] cos (w1t) T + yow3 sin (wat) J] = —m [wizl + wiy]]
Note that if wy =wo =w then
== —mw?® 21 + yj] = —mw’r

That is, it is a central force if w1 = ws = w.
b) Find the potential energy as a function of x and y.
Since

1+

ou . 0U
s

then 1

assuming that U = 0 at the origin.
¢) Determine the kinetic energy of the particle and show that it is conserved.
The total energy

1 1 1
E=T+U= 5m (332 + yg) + 3m (w%af + w§y2) =3m (x%w% + y%w%)

since cos?0 + sin? @ = 1. Thus the total energy E is a constant and is conserved.

2.10.4 Total mechanical energy for conservative systems

Equation 2.20 showed that, using Newton’s second law, F = ‘3—‘;7 the first-order spatial integral gives that

the work done, Wis, is related to the change in the kinetic energy. That is,

2

1 1

Wi = / F.dr = §mv§ — Emvf =T, —T; (2.68)
1

The work done Wi, also can be evaluated in terms of the known forces F; in the spatial integral.
Consider that the resultant force acting on particle ¢ in this n-particle system can be separated into an
external force FF*! plus internal forces between the n particles of the system

n
F,=F+) f; (2.69)
J
i#]
The origin of the external force is from outside of the system while the internal force is due to the interaction
with the other n — 1 particles in the system. Newton’s Law tells us that

pi=F; =F] + Z fi; (2.70)
iij
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The work done on the system by a force moving from configuration 1 — 2 is given by

n 2 n o on 2
% i 7
i#]

Since fij = 7fji then

n 2 n n 2
Wlﬂg = Z/ FZE . dI’i + Z Z/ fij . (dl‘l - dI‘j) (272)
i 71 i Ul

i<j
where dr; — dr; = dr;; is the vector from j to i.
Assume that both the external and internal forces are conservative, and thus can be derived from time
independent potentials, that is
FF = —v,UuF= (2.73)
f;; = VUl (2.74)
Then

n 2 n n 2
Wl_,g = — ZA VZ'UZ-Emt . dI‘i — ZZ/l VZUZI]nt . dI‘ij
7 ? J

i<j
n n n n
= UP ()= Y UPH@)+ YU (1) - Y U)
= UP(1) - U™ (2)+ U™ (1) —U™(2) (2.75)
Define the total external potential energy,
Ukt =3 "kt (2.76)
i
and the total internal energy
Ulnt — Z Uzlnt (277)

Equating the two equivalent equations for Wj_.5, that is 2.68 and 2.75.gives that
Wi =T, — Ty = UE® (1) — UE® (2) + U™ (1) — U™ (2) (2.78)
Regroup these terms in equation 2.78 gives
T + UBH (1) + U™ (1) = Th + UF=L(2) + UI™(2)
This shows that, for conservative forces, the total energy is conserved and is given by
E=T+UP* 4yt (2.79)

The three first-order integrals for linear momentum, angular momentum, and energy provide powerful
approaches for solving the motion of Newtonian systems due to the applicability of conservation laws for the
corresponding linear and angular momentum plus energy conservation for conservative forces. In addition,
the important concept of center-of-mass motion naturally separates out for these three first-order integrals.
Although these conservation laws were derived assuming Newton’s Laws of motion, these conservation laws
are more generally applicable, and these conservation laws surpass the range of validity of Newton’s Laws of
motion. For example, in 1930 Pauli and Fermi postulated the existence of the neutrino in order to account for
non-conservation of energy and momentum in S-decay because they did not wish to relinquish the concepts
of energy and momentum conservation. The neutrino was first detected in 1956 confirming the correctness
of this hypothesis.
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2.11 Virial Theorem

The Virial theorem is an important theorem for a system of moving particles both in classical physics and
quantum physics. The Virial Theorem is useful when considering a collection of many particles and has a
special importance to central-force motion. For a general system of mass points with position vectors r; and
applied forces F;, consider the scalar product G

G= Z pi-T; (2.80)
i
where 7 sums over all particles. The time derivative of G is
dG . .

However,

Y opi-ti=y mii-b =y mo’=2T (2.82)
Also, since p; = F;

(2

Zﬁ)i T = ZFZ ‘T (2.83)

Thus i

The time average over a period 7 is
1 (7dG G(1) — G(0)
- —dt = ——+—= = 2T E F, r; 2.
~ ,/o 7 dt = 2T) + i r (2.85)

where the () brackets refer to the time average. Note that if the motion is periodic and the chosen time 7

equals a multiple of the period, then w = 0. Even if the motion is not periodic, if the constraints and
velocities of all the particles remain finite, then there is an upper bound to G. This implies that choosing

w — 0. In both cases the left-hand side of the equation tends to zero giving the

(T) = —% <Z F;- ri> (2.86)

The right-hand side of this equation is called the Virial of the system. For a single particle subject to a
conservative central force F = —VU the Virial theorem equals

T — oo means that
Virial theorem

(T) = % (VU -1) = % <7"88—[:> (2.87)

If the potential is of the form U = kr™*! that is, F = —k(n + 1)7", then r%—g = (n+1)U. Thus for a single

particle in a central potential U = kr™*! the Virial theorem reduces to

=" W) (2.85)

The following two special cases are of considerable importance in physics.
Hooke’s Law: Note that for a linear restoring force n = 1 then

(T) = +(U) (n=1)

You may be familiar with this fact for simple harmonic motion where the average kinetic and potential
energies are the same and both equal half of the total energy.
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Inverse-square law: The other interesting case is for the inverse square law n = —2 where
1
(1) = —5 (U) (n=-2)
The Virial theorem is useful for solving problems in that knowing the exponent n of the field makes it
possible to write down directly the average total energy in the field. For example, for n = —2
1 1
(E) = (T) + (U) = —3 (U) + () = 5 (U) (289)

This occurs for the Bohr model of the hydrogen atom where the kinetic energy of the bound electron is half
of the potential energy. The same result occurs for planetary motion in the solar system.

2.5 Example: The ideal gas law

The Virial theorem deals with average properties and has applications to statistical mechanics. Consider
an ideal gas. According to the Equipartition theorem the average kinetic energy per atom in an ideal gas is
%kT where T 1is the absolute temperature and k is the Boltzmann constant. Thus the average total kinetic
energy for N atoms is (KE) = %NkT. The right-hand side of the Virial theorem contains the force F;. For
an ideal gas it is assumed that there are no interaction forces between atoms, that is the only force is the
force of constraint of the walls of the pressure vessel. The pressure P is force per unit area and thus the
instantaneous force on an area of wall dA is dF; = —PdA where 1 designates the unit vector normal to
the surface. Thus the right-hand side of the Virial theorem is

1 P [
75 <21:F11‘z> :E/andA

Use of the divergence theorem thus gives that [f-r;dA = [V -xdV =3 [ dV = 3V. Thus the Virial theorem
leads to the ideal gas law, that is
NET = PV

2.6 Example: The mass of galaries

The Virial theorem can be used to make a crude estimate of the mass of a cluster of galazies. Assuming a
spherically-symmetric cluster of N galaxies, each of mass m, then the total mass of the cluster is M = Nm.
A crude estimate of the cluster potential energy is

)~ (@)

where R is the radius of a cluster. The average kinetic energy per galazy is %m <U>2 where <v>2 is the average
square of the galaxy velocities with respect to the center of mass of the cluster. Thus the total kinetic energy
of the cluster is
Nm@)?* M (v)?
(KE) ~ = (8)
2 2
The Virial theorem tells us that a central force having a radial dependence of the form F « r™ gives (KE) =

"TH (U). For the inverse-square gravitational force then

(KE) =~ (U) )

Thus equations «, 8 and ~y give an estimate of the total mass of the cluster to be

R{v)’
G

This estimate is larger than the value estimated from the luminosity of the cluster implying a large amount
of “dark matter” must exist in galaxies which remains an open question in physics.

M ~
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2.12 Applications of Newton’s equations of motion

Newton’s equation of motion can be written in the form

v ’r
F= Cé—lz = mill—t = mfl? (2.90)

A description of the motion of a particle requires a solution of this second-order differential equation of
motion. This equation of motion may be integrated to find r(¢) and v(t) if the initial conditions and
the force field F(t) are known. Solution of the equation of motion can be complicated for many practical
examples, but there are various approaches to simplify the solution. It is of value to learn efficient approaches
to solving problems.

The following sequence is recommended

a) Make a vector diagram of the problem indicating forces, velocities, etc.

b) Write down the known quantities.

¢) Before trying to solve the equation of motion directly, look to see if a basic conservation law applies.
That is, check if any of the three first-order integrals, can be used to simplify the solution. The use of
conservation of energy or conservation of momentum can greatly simplify solving problems.

The following examples show the solution of typical types of problem encountered using Newtonian
mechanics.

2.12.1 Constant force problems

Problems having a constant force imply constant acceleration. The classic example is a block sliding on an
inclined plane, where the block of mass m is acted upon by both gravity and friction. The net force F is
given by the vector sum of the gravitational force F4, normal force N and frictional force f.

F=F,+N+f; =ma (2.91)

Taking components perpendicular to the inclined plane in the y direction

—Fycos0+ N =0 (2.92)
That is, since Fy; = mg,
N =mgcosf (2.93)
Similarly, taking components along the inclined plane in the z di-
rection
. d*x
F,sinf — fr =mos (2.94)
Using the concept of coefficient of friction p,
f; = uN (2.95)
Thus the equation of motion can be written as
d2
mg (sin @ — pcosf) = mWf (2.96)
The block accelerates if sinf > pcosf, that is, tanf > pu. The
acceleration is constant if u and  are constant, that is Figure 2.3: Block on an inclined plane
d2
Wf =g (sinf — pcos) (2.97)

Remember that if the block is stationary, the friction coefficient balances such that (sinf — pcosf) = 0,
that is, tan @ = p. However, there is a maximum static friction coefficient ug beyond which the block starts
sliding. The kinetic coeflicient of friction py is applicable for sliding friction and usually pz < pg.
Another example of constant force and acceleration is motion of objects free falling in a uniform gravi-
tational field when air drag is neglected. Then one obtains the simple relations such as v = u + at, etc.
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2.12.2 Linear Restoring Force

An important class of problems involve a linear restoring force, that is, they obey Hooke’s law. The equation
of motion for this case is

F(z) = —kz =mi (2.98)

It is usual to define

3=

wi (2.99)

Then the equation of motion then can be written as
Ftwir=0 (2.100)

which is the equation of the harmonic oscillator. Examples are small oscillations of a mass on a spring,
vibrations of a stretched piano string, etc.
The solution of this second order equation is

x(t) = Asin (wot — 0) (2.101)

This is the well known sinusoidal behavior of the displacement for the simple harmonic oscillator. The

angular frequency wy is
[k
=/= 2.102
wo m ( )

Note that this linear system has no dissipative forces, thus the total energy is a constant of motion as
discussed previously. That is, it is a conservative system with a total energy E given by

1 1
§mﬁ+§m3:E (2.103)

The first term is the kinetic energy and the second term is the potential energy. The Virial theorem gives
that for the linear restoring force the average kinetic energy equals the average potential energy.

2.12.3 Position-dependent conservative forces

The linear restoring force is an example of a conservative field. The total energy E is conserved, and if the
field is time independent, then the conservative forces are a function only of position. The easiest way to
solve such problems is to use the concept of potential energy U illustrated in Figure 2.4.

2
U2 — U1 = —/ F.dr (2104)
1

Consider a conservative force in one dimension. Since it was shown that the total energy £ = T + U is
conserved for a conservative field, then

1
E:T+U=§m#+U@) (2.105)
Therefore:
v=% [ E_U@) (2.106)
Codt m '

Integration of this gives
(2.107)

t_toz/‘”i—dﬂc
w0 )5 (B —Ul(z)]

where & = xy when t = t5. Knowing U(x) it is possible to solve this equation as a function of time.
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It is possible to understand the general features of the
solution just from inspection of the function U(x). For ex-  Ux
ample, as shown in figure 2.4 the motion for energy FE;
is periodic between the turning points x, and z;. Since
the potential energy curve is approximately parabolic be- E,
tween these limits the motion will exhibit simple harmonic
motion. For Fy the turning point coalesce to zg, that is A
there is no motion. For total energy FEs the motion is E,

E,
IEl
E)

periodic in two independent regimes, z. < z < x4, and
ze < x < xy. Classically the particle cannot jump from
one pocket to the other. The motion for the particle with
total energy FEs5 is that it moves freely from infinity, stops
and rebounds at x = 4 and then returns to infinity. That
is the particle bounces off the potential at z,. For energy
E, the particle moves freely and is unbounded. For all X
these cases, the actual velocity is given by the above re- XXX X %% X X%
lation for v (x). Thus the kinetic energy is largest where
the potential is deepest. An example would be motion of
a roller coaster car.

Position-dependent forces are encountered extensively Figure 2.4: One-dimensional potential U(z).
in classical mechanics. Examples are the many manifesta-
tions of motion in gravitational fields, such as interplane-
tary probes, a roller coaster, and automobile suspension systems. The linear restoring force is an especially
simple example of a position-dependent force while the most frequently encountered conservative potentials
are in electrostatics and gravitation for which the potentials are;

1
U(r) = I q1_2qg (Electrostatic potential energy)
TEY T1g
U(r)=-G mrl2m 2 (Gravitational potential energy)
12

Knowing U(r) it is possible to solve the equation of motion as a function of time.

2.7 Example: Diatomic molecule

An example of a conservative field is a vibrating diatomic molecule which has a potential energy depen-
dence with separation distance x that is described approzimately by the Morse function

2
U(x)zUo[l—e —Uo

_ (zfdzg) ]

where Uy, xo, and 0 are parameters chosen to best describe the particular pair of atoms. The restoring force
is given by

dU(x) UO _ (@—=zq) _(z—=g)
Fip= )l o] [

(x) T 3 e e

This has a minimum value of U(xzg) = Uy at x = xo.

Note that for small amplitude oscillations, where
(x —x0) << 0 .
the exponential term in the potential function can be ez- o8
panded to give U 2:
2 ﬁ 027
T —x U
U(x) =~ Uy 1—(1——%) —Uozé—g(x—xo)Q—Uo "
This gives a restoring force 1
dU(ZC) U() —0:3
F =7t =_92——(x—

(z) Ao 5 (z — o) o]

Potential energy function U(z)/Uy versus x /0

That is, for small amplitudes the restoring force is linear.
for the diatomic molecule.
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2.12.4 Constrained motion

A frequently encountered problem involving position dependent forces, is when the motion is constrained to
follow a certain trajectory. Forces of constraint must exist to constrain the motion to a specific trajectory.
Examples are, the roller coaster, a rolling ball on an undulating surface, or a downhill skier, where the
motion is constrained to follow the surface or track contours. The potential energy can be evaluated at all
positions along the constrained trajectory for conservative forces such as gravity. However, the additional
forces of constraint that must exist to constrain the motion, can be complicated and depend on the motion.
For example, the roller coaster must always balance the gravitational and centripetal forces. Fortunately
forces of constraint F¢ often are normal to the direction of motion and thus do not contribute to the total
mechanical energy since then the work done F¢ - dl is zero. Magnetic forces F =qv x B exhibit this feature
of having the force normal to the motion.

Solution of constrained problems is greatly simplified if the other forces are conservative and the forces
of constraint are normal to the motion, since then energy conservation can be used.

2.8 Example: Roller coaster

Consider motion of a roller coaster shown in the
adjacent figure. This system is conservative if the fric-
tion and air drag are neglected and then the forces of
constraint are normal to the direction of motion.

The kinetic energy at any position is just given by
energy conservation and the fact that

E=T+U

where U depends on the height of the track at any the
giwen location. The kinetic energy is greatest when the
potential energy is lowest. The forces of constraint
can be deduced if the velocity of motion on the track
is known. Assuming that the motion is confined to a
vertical plane, then one has a centripetal force of con-
straint ™2 normal to the track inwards towards the
center of the radius of curvature p, plus the gravita-
tion force downwards of mg.

2
mun

The constraint force is

— mg upwards at the

top of the loop, while it is mo + mg downwards at
the bottom of the loop. To ensure that the car and
occupants do not leave the required trajectory, the force
upwards at the top of the loop has to be positive, that
is, v3 > pg. The velocity at the bottom of the loop
is given by %vaB = %mv% + 2mgp assuming that the
track has a constant radius of curvature p. That is;
at a minimum v% = pg + 4pg = 5pg. Therefore the

occupants now will feel an acceleration downwards of Roller coaster (CCO Public Dmain)

at least % + g = 6g at the bottom of the loop. The

first roller coaster was built with such a constant radius of curvature but an acceleration of 6g was too much
for the average passenger. Therefore roller coasters are designed such that the radius of curvature is much
larger at the bottom of the loop, as illustrated, in order to maintain sufficiently low g loads and also ensure
that the required constraint forces exist.

Note that the minimum velocity at the top of the loop, vr, implies that if the cart starts from rest it must
start at a height h > £ above the top of the loop if friction is negligible. Note that the solution for the rolling
ball on such a roller coaster differs from that for a sliding object since one must include the rotational energy
of the ball as well as the linear velocity.

Looping the loop in a sailplane involves the same physics making it necessary to vary the elevator control
to vary the radius of curvature throughout the loop to minimize the maximum g load.
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2.12.5 Velocity Dependent Forces

Velocity dependent forces are encountered frequently in practical problems. For example, motion of an
object in a fluid, such as air, where viscous forces retard the motion. In general the retarding force has a
complicated dependence on velocity. A quadrative-velocity drag force in air often can be expressed in the
form,

1
Fp(v) = —§chAv20 (2.108)

where cp is a dimensionless drag coefficient, p is the density of air, A is the cross sectional area perpendicular
to the direction of motion, and v is the velocity. Modern automobiles have drag coefficients as low as 0.3. As
described in chapter 16, the drag coefficient cp depends on the Reynold’s number which relates the inertial to
viscous drag forces. Small sized objects at low velocity, such as light raindrops, have low Reynold’s numbers
for which cp is roughly proportional to v~ leading to a linear dependence of the drag force on velocity, i.e.
Fp(v) < v. Larger objects moving at higher velocities, such as a car or sky-diver, have higher Reynold’s
numbers for which cp is roughly independent of velocity leading to a drag force Fp(v) o< v2. This drag force
always points in the opposite direction to the unit velocity vector. Approximately for air

Fp(v) = — (c1v + c20?) v (2.109)

where for spherical objects of diameter D, ¢; ~ 1.55x1074D and ¢, ~ 0.22D? in MKS units. Fortunately, the
equation of motion usually can be integrated when the retarding force has a simple power law dependence.
As an example, consider free fall in the Farth’s gravitational field.

2.9 Example: Vertical fall in the earth’s gravitational field.

Linear regime c1 >> cov
For small objects at low-velocity, i.e. low Reynold’s number, the drag approximately has a linear depen-
dence on velocity. Then the equation of motion is

dv
—mg — c1v = m—
g 1 i

Separate the variables and integrate

/” mdv m, <mg—|—clv>
= _— = —— n _—
vy —Mg — 1V c1 mg —+ €19

That is
v (@ H,O) ey
C1 C1
Note that for t > Z* the velocity approaches a terminal velocity of ve = f%‘l. The characteristic time
constant is T = 7t = £=. Note that if vo =0, then

V= VUso (l—e*%)

For the case of small raindrops with D = 0.5mm, then vo, = 8m/s (18mph) and time constant 7 = 0.8 sec.
Note that in the absence of air drag, these rain drops falling from 2000m would attain a wvelocity of over
400 m.p.h. It is fortunate that the drag reduces the speed of rain drops to non-damaging values. Note that
the above relation would predict high velocities for hail. Fortunately, the drag increases quadratically at the
higher velocities attained by large rain drops or hail, and this limits the terminal velocity to moderate values.
For the United States these velocities still are sufficient to do considerable crop damage in the mid-west.

Quadratic regime CoU >> C

For larger objects at higher velocities, i.e. high Reynold’s number, the drag depends on the square of the
velocity making it necessary to differentiate between objects rising and falling. The equation of motion is

d
—mg + cov? = md—:
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where the positive sign is for falling objects and negative sign for rising objects. Integrating the equation of

motion for falling gives
v mdv V) v
t= / — =7 (tanhl — _tanh! —)
vy —Mg + C2v Voo Voo
m

where T = v and Voo = TZ—Qg. That is, T = ”?”. For the case of a falling object with vg = 0, solving for

velocity gives

t
V = Vs tanh —
i

As an example, a 0.6kg basket ball with D = 0.25m will have voo = 20m/s (43 m.p.h.) and T = 2.1sec.

Consider President George H.W. Bush skydiving. Assume his mass is 70kg and assume an equivalent
spherical shape of the former President to have a diameter of D = 1m. This gives that vo = 56m/s
(120mph) and T = 5.6sec. When Bush senior opens his 8m diameter parachute his terminal velocity is
estimated to decrease to Tm/s (15 mph) which is close to the value for a typical (8m) diameter emergency
parachute which has a measured terminal velocity of 11mph in spite of air leakage through the central vent
needed to stabilize the parachute motion.

2.10 Example: Projectile motion in air

Consider a projectile initially at x = y = 0 at t = 0, that is fired at an initial velocity vy at an angle
0 to the horizontal. In order to understand the general features of the solution, assume that the drag is
proportional to velocity. This is incorrect for typical projectile velocities, but simplifies the mathematics. The
equations of motion can be expressed as
mi = —kmz

my = —kmy —mg

where k is the coefficient for air drag. Take the initial conditions at t = 0 to be x =y =0, £ = v, cosb,
U = v,sin .
Solving in the x coordinate,
& _ 4
at
Therefore
& = v, cos e

That 1is, the velocity decays to zero with a time constant T = ki

Integration of the velocity equation gives

Yo —kt
z=—(1—e
k(1 )
Note that this implies that the body approaches a value of x = 4= as t — oo.

The trajectory of an object is distorted from the parabolic shape, that occurs for k = 0, due to the rapid
drop in range as the drag coefficient increases. For realistic cases it is mecessary to use a computer to solve
this numerically.

2.12.6 Systems with Variable Mass

Classic examples of systems with variable mass are the rocket, a falling chain, and nuclear fission. Consider
the problem of vertical rocket motion in a gravitational field using Newtonian mechanics. When there is a
vertical gravitational external field, the vertical momentum is not conserved due to both gravity and the
ejection of rocket propellant. In a time dt the rocket ejects propellant dm, vertically with exhaust velocity
relative to the rocket of u. Thus the momentum imparted to this propellant is

dp, = —udm,, (2.110)
Therefore the rocket is given an equal and opposite increase in momentum dpp

dpr = +udm,, (2.111)
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In the time interval dt the net change in the linear momentum of the rocket plus fuel system is given by
dp = (m — dmy)(v + dv) + dmy,(v — u) — mv = mdv — udm,, (2.112)
The rate of change of the linear momentum thus equals

Cdp  dv dm,

oo av 2.11
=t o Vat (2.113)

Consider the problem for the special case of vertical ascent of the rocket against the external gravitational

force F., = —mg. Then

dm,, dv
-mg+u—-— =

= (2.114)

This can be rewritten as
—mg + umy, = mv

The second term comes from the variable rocket mass where
the loss of mass of the rocket equals the mass of the ejected

propellant. Assuming a constant fuel burn 7, = o then ¥ T
v
m=—m, =—« (2.115)
where o > 0. Then the equation becomes lg
«a
dv = (—g + —u) dt (2.116)
m
Since p
am dm’ §y
T (2.117) 1
then d Earth
LY (2.118)
@

Inserting this in the above equation gives Figure 2.5: Vertical motion of a rocket in a

avitational field
do=(£-2)dm (2.119) SRAEOR
a m
Integration gives
v=-2 (mo —m)+uln (@) (2.120)
@ m
But the change in mass is given by
m i
/ dm = —a/ dt (2.121)
mo 0
That is
mo—m = at (2.122)
Thus m
v=—gt+uln (—0) (2.123)
m

Note that once the propellant is exhausted the rocket will continue to fly upwards as it decelerates in
the gravitational field. You can easily calculate the maximum height. Note that this formula assumes that
the acceleration due to gravity is constant whereas for large heights above the Earth it is necessary to use
the true gravitational force —G Af;” where r is the distance from the center of the earth. In real situations
it is necessary to include air drag which requires a computer to numerically solve the equations of motion.
The highest rocket velocity is attained by maximizing the exhaust velocity and the ratio of initial to final
mass. Because the terminal velocity is limited by the mass ratio, engineers construct multistage rockets that
jettison the spent fuel containers and rockets. The variational-principle approach applied to variable mass

problems is discussed in chapter 8.7
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2.12.7 Rigid-body rotation about a body-fixed rotation axis

The most general case of rigid-body rotation involves rotation about some body-fixed point with the orien-
tation of the rotation axis undefined. For example, an object spinning in space will rotate about the center
of mass with the rotation axis having any orientation. Another example is a child’s spinning top which spins
with arbitrary orientation of the axis of rotation about the pointed end which touches the ground about a
static location. Such rotation about a body-fixed point is complicated and will be discussed in chapter 13.
Rigid-body rotation is easier to handle if the orientation of the axis of rotation is fixed with respect to the
rigid body. An example of such motion is a hinged door.
For a rigid body rotating with angular velocity w, the total angular momentum L is given by

For rotation equation appendix D29 gives
V; =W X7T; (294)

thus the angular momentum can be written as
n n
L:Zrixpi:Zmirixwxri (2125)
i i
The vector triple product can be simplified using the vector identity equation B.24 giving

L= Z [(mir?) w — (r; - w)m;r;] (2.126)

Rigid-body rotation about a body-fixed symmetry axis

The simplest case for rigid-body rotation is when the body has a symmetry axis with the angular velocity w
parallel to this body-fixed symmetry axis. For this case then r; can be taken perpendicular to w, for which
the second term in equation 2.126, i.e. (r; - w) =0, thus

n

Loym = Z (mir2) w (r; perpendicular to w)

i

i

The moment of inertia about the symmetry axis is defined as
n
Loym = Z mir? (2.127)
i

where r; is the perpendicular distance from the axis of rotation to the body, m,;. For a continuous body the
moment of inertia can be generalized to an integral over the mass density p of the body

Loym = / prdVv (2.128)

where 7 is perpendicular to the rotation axis. The definition of the moment of inertia allows rewriting the
angular momentum about a symmetry axis Ly, in the form

Lsym = Symw (2.129)

where the moment of inertia Iy, is taken about the symmetry axis and assuming that the angular velocity
of rotation vector is parallel to the symmetry axis.
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Rigid-body rotation about a non-symmetric body-fixed axis

In general the fixed axis of rotation is not aligned with a symmetry axis of the body, or the body does not
have a symmetry axis, both of which complicate the problem.

For illustration consider that the rigid body comprises a system of n masses m; located at positions r;,
with the rigid body rotating about the z axis with angular velocity w. That is,

W =w.2 (2.130)

In cartesian coordinates the fixed-frame vector for particle i is

r; = (24, Yi, i) (2.131)
using these in the cross product (2.94) gives
—W2Yi
V,=wXr; = WLT; (2.132)
0

which is written as a column vector for clarity. Inserting v; in the cross-product r; X v; gives the components
of the angular momentum to be

n n —Z;X;
L= E m;r; X v; = E m;wz —ZiYi

That is, the components of the angular momentum are

n
z
L, = — (Z mizixi> w, = I ,w, (2.133) A
- m
K3
n \ ©
Ly = - (Z mzzzyl> Wz = Iyzwz L )
n ' o
L, = <Z m; [:cf +yﬂ> w,=1,,w,
i
. . . ; y
Note that the perpendicular distance from the z axis o
in cylindrical coordinates is p = \/x? + y2, thus the an-

gular momentum L, about the z axis can be written

as
n
L, = (Z mip2> w, =1,,w, (2.134)
i

where (2.134) gives the elementary formula for the mo-
ment of inertia I, = Iy, about the z axis given earlier

in (2.129). o _ angle a shown at the instant when m happens to
The surprising result is that L, and L, are non-zero 1i¢ in the yz plane. As the body rotates about
implying that the total angular momentum vector L s the »— axis the mass m has a velocity and mo-

in general not parallel with w. This can be understood | entum into the page (the negative 2 direction).
by considering the single body m shown in figure 2.6.

When the body is in the y,z plane then x = 0 and
L, = 0. Thus the angular momentum vector L has a
component along the —y direction as shown which is
not parallel with w and, since the vectors w,L,r; are
coplanar, then L must sweep around the rotation axis w to remain coplanar with the body as it rotates
about the z axis. Instantaneously the velocity of the body v; is into the plane of the paper and, since

Figure 2.6: A rigid rotating body comprising a sin-
gle mass m attached by a massless rod at a fixed

Therefore the angular momentum L =r X p is in
the direction shown which is not parallel to the
angular velocity w.
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L; = m;r; X v;, then L; is at an angle (90° — «) to the z axis. This implies that a torque must be applied
to rotate the angular momentum vector. This explains why your automobile shakes if the rotation axis and
symmetry axis are not parallel for one wheel.

The first two moments in (2.133) are called products of inertia of the body designated by the pair of
axes involved. Therefore, to avoid confusion, it is necessary to define the diagonal moment, which is called
the moment of inertia, by two subscripts as I,,. Thus in general, a body can have three moments of inertia
about the three axes plus three products of inertia. This group of moments comprise the inertia tensor
which will be discussed further in chapter 13. If a body has an axis of symmetry along the z axis then the
summations will give I, = I,, = 0 while I,, will be unchanged. That is, for rotation about a symmetry
axis the angular momentum and rotation axes are parallel. For any axis along which the angular momentum
and angular velocity coincide is called a principal axis of the body.

2.11 Example: Moment of inertia of a thin door

Consider that the door has width a and height b and assume the door thickness is negligible with areal
density okg/m2. Assume that the door is hinged about the y axis. The mass of a surface element of
dimension dx.dy at a distance x from the rotation axis is dm = odzdy, thus the mass of the complete door
is M = oab. The moment of inertia about the y azis is given by

a b 1 1
I = / / or’dydr = ~oba® = = Ma?
z=0 Jy=0 3 3

2.12 Example: Merry-go-round

A child of mass m jumps onto the outside edge of a circular merry-go-round of moment of inertia I, and
radius R and initial angular velocity wo. What is the final angular velocity wy?

If the initial angular momentum is Ly and, assuming the child jumps with zero angular velocity, then the
conservation of angular momentum implies that

Ly = Ly
Iwg = ITw+musR
Vo Uf )
I— = —=(I R
I R( + mR?)
That is
vp_wr_ 1

vo wo I+mR?

Note that this is true independent of the details of the acceleration of the initially stationary child.

2.13 Example: Cue pushes a billiard ball

Consider a billiard ball of mass M and radius R
s pushed by a cue in a direction that passes through
the center of gravity such that the ball attains a veloc- @ v,
ity vo. The friction coefficient between the table and | 1D _—
the ball is pu. How far does the ball move before the F
initial slipping motion changes to pure rolling mo-
tion?

Since the direction of the cue force passes through
the center of mass of the ball, it contributes zero
torque to the ball. Thus the initial angular momen-

tum is zero at t = 0. The friction force f points opposite to the direction of motion and causes a torque N
about the center of mass in the direction §.

Cue pushing a billiard ball horizontally at the height
of the centre of rotation of the ball.

N;=f-R=uMgR
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Since the moment of inertia about the center of a uniform sphere is I = %MR2 then the angular acceleration
of the ball is
o pMgR _ pMgR 5 pg

I~ ZMR® 2R ()

Moreover the frictional force causes a deceleration as of the linear velocity of the center of mass of

% = —ug (B)

as = —
Integrating o from time zero to t gives

‘ 5 ug
= [ wdt =289
w /Ow 5 R

The linear velocity of the center of mass at time t is given by integration of equation f3

t
Vg z/ asdt = vy — ugt
0

The billiard ball stops sliding and only rolls when vs = wR, that is, when

o g
5 R =0~ Hg
That is, when
P
roll — 7#9

Thus the ball slips for a distance

troll 2 2

Kt o 12 vy

s = Vsdt = Votroyl — —2= = ——
/0 : "o 2 4959

Note that if the ball is pushed at a distance h above the center of mass, besides the linear velocity there
is an itial angular momentum of
M’Uoh 5 ’U()h
w = = —-—
%M R2 2 R?

For the special case h = %R, the ball immediately assumes a pure non-slipping roll. For h < %R one has
w < E while h > %R corresponds to w > 4§. In the latter case the frictional force points forward.

2.12.8 Time dependent forces

Many problems involve action in the presence of a time dependent force. There are two extreme cases that
are often encountered. One case is an impulsive force that acts for a very short time, for example, striking
a ball with a bat, or the collision of two cars. The second case involves an oscillatory time dependent force.
The response to impulsive forces is discussed below whereas the response to oscillatory time-dependent forces
is discussed in chapter 3.

Translational impulsive forces

An impulsive force acts for a very short time relative to the response time of the mechanical system being
discussed. In principle the equation of motion can be solved if the complicated time dependence of the force,
F(t), is known. However, often it is possible to use the much simpler approach employing the concept of an
impulse and the principle of the conservation of linear momentum.

Define the linear impulse P to be the first-order time integral of the time-dependent force.

P= /F(t)dt (2.135)
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Since F(t) = Z—‘t’ then equation 2.135 gives that

t
/ P gy — / dp =p(t) — po = Ap (2.136)

dt’ 0
Thus the impulse P is an unambiguous quantity that equals the change in linear momentum of the object

that has been struck which is independent of the details of the time dependence of the impulsive force.
Computation of the spatial motion still requires knowledge of F'(¢) since the 2.136 can be written as

/ Nt + vo (2.137)
m
Integration gives

t
r(t) —ro = vot+/
0

m

L .
—/0 F(t)dt}dt (2.138)

In general this is complicated. However, for the case of a constant force F(t) = Fy, this simplifies to the

constant acceleration equation

1F
r(t) — ro = vot + 5—0{2 (2.139)

where the constant acceleration a = %1

Angular impulsive torques

Note that the principle of impulse also applies to angular motion. Define an impulsive torque T as the
first-order time integral of the time-dependent torque.

T= /N(t)dt (2.140)

Since torque is related to the rate of change of angular momentum

dL

(1) =— (2.141)

then
/ %dt = / dL = L(t) — Ly = AL (2.142)

Thus the impulsive torque T equals the change in angular momentum AL of the struck body.

2.14 Example: Center of percussion of a baseball bat

When an impulsive force P strikes a bat of mass M at a dis-
tance s from the center of mass, then both the linear momentum
of the center of mass, and angular momenta about the center
of mass, of the bat are changed. Assume that the ball strikes
the bat with an impulsive force P = Ap*™* perpendicular to the
symmetry axis of the bat at the strike point S which is a distance
s from the center of mass of the bat. The translational impulse y
given to the bat equals the change in linear momentum of the
ball as given by equation 2.136 coupled with the conservation of
linear momentum | °®]| ¢

P = Ap’™ = MAV' M "

Similarly equation 2.142 gives that the angular impulse T equals
. v,
the change in angular momentum about the center of mass to be m @ g ol s

T=sxP=AL :Icmchm
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The above equations give that

P

A bat -

Vem M
x P

A bat  _ S
wcm Icm

Assume that the bat was stationary prior to the strike, then after the strike the net translational velocity
of a point O along the body-fired symmetry axis of the bat at a distance y from the center of mass, is given

by

P P
V(y):AchJrchme:MJrI ((SXP)XY):MJFI

It is assumed that P and s are perpendicular and thus (s - P) = 0 which simplifies the above equation to

(s-y)P—(s-P)y]

P
=A cm Acm =—|1
v (y) Vem + AWem Xy M<+

Note that the translational velocity of the location O, along the bat symmetry axis at a distance y from the
center of mass, is zero if the bracket equals zero, that is, if

Ic_m__k;2

.y:_M =

where kep, 18 called the radius of gyration of the body about the center of mass. Note that when the scalar
product s -y = —%}F = —k2,, then there will be no translational motion at the point O. This point on the
y axis lies on the opposite side of the center of mass from the strike point S, and is called the center of
percussion corresponding to the impulse at the point S. The center of percussion often is referred to as the
“sweet spot” for an object corresponding to the impulse at the point S. For a baseball bat the batter holds
the bat at the center of percussion so that they do mot feel an impulse in their hands when the ball is struck
at the point S. This principle is used extensively to design bats for all sports involving striking a ball with
a bat, such as, cricket, squash, tennis, etc. as well as weapons such of swords and axes used to decapitate
opponents.

2.15 Example: Energy transfer in charged-particle scattering

Consider a particle of charge +e1 moving with very high
velocity vg along a straight line that passes a distance b
from another charge +es and mass m. Find the energy Q y
transferred to the mass m during the encounter assuming
the force is given by Coulomb’s law electrostatics. Since the +e,
charged particle e; moves at very high speed it is assumed
that charge 2 does not change position during the encounter. )/C
Assume that charge 1 moves along the —y axis through the
origin while charge 2 is located on the x axis at x = b. j

o

Let us consider the impulse given to charge 2 during the [V
encounter. By symmetry the y component must cancel while —7=©
the x component is given by ®
€1€2 €e1€2 dt m @,
dp, = Fpdt = — cosOdt = — cos 0—db o b +e,
4mepr? drreqgr? do ) )
Charged-particle scattering
But
r0 = —vg cosd
where

g = cos(m — 0) = —cosd



2.13. SOLUTION OF MANY-BODY EQUATIONS OF MOTION 37

Thus 169
dpy = — s 0do
P 47’1’60()’[}0 €0

Integrate from 3 <6 < 37” gives that the total momentum imparted to es s

3w
2

€12 €1€2
= ——— 0df = ———
p 4dmegbug [r €08 2megbug

[N

Thus the recoil energy of charge 2 is given by
P: 1 eres \?
EQ = — = — _—
2m  2m \ 2mwegbug
2.13 Solution of many-body equations of motion

The following are general methods used to solve Newton’s many-body equations of motion for practical
problems.

2.13.1 Analytic solution

In practical problems one has to solve a set of equations of motion since the forces depend on the location
of every body involved. For example one may be dealing with a set of coupled oscillators such as the
many components that comprise the suspension system of an automobile. Often the coupled equations of
motion comprise a set of coupled second-order differential equations. The first approach to solve such a
system is to try an analytic solution comprising a general solution of the inhomogeneous equation plus one
particular solution of the inhomogeneous equation. Another approach is to employ numeric integration using
a computer.

2.13.2 Successive approximation

When the system of coupled differential equations of motion is too complicated to solve analytically, one
can use the method of successive approximation. The differential equations are transformed to integral
equations. Then one starts with some initial conditions to make a first order estimate of the functions. The
functions determined by this first order estimate then are used in a second iteration and this is repeated
until the solution converges. An example of this approach is when making Hartree-Foch calculations of the
electron distributions in an atom. The first order calculation uses the electron distributions predicted by
the one-electron model of the atom. This result then is used to compute the influence of the electron charge
distribution around the nucleus on the charge distribution of the atom for a second iteration etc.

2.13.3 Perturbation method

The perturbation technique can be applied if the force separates into two parts F' = Fy + F» where F} >> F;
and the solution is known for the dominant F} part of the force. Then the correction to this solution due
to addition of the perturbation F5 usually is easier to evaluate. As an example, consider that one of the
Space Shuttle thrusters fires. In principle one has all the gravitational forces acting plus the thrust force
of the thruster. The perturbation approach is to assume that the trajectory of the Space Shuttle in the
earth’s gravitational field is known. Then the perturbation to this motion due to the very small thrust,
produced by the thruster, is evaluated as a small correction to the motion in the Earth’s gravitational field.
This perturbation technique is used extensively in physics, especially in quantum physics. An example
from my own research is scattering of a 1GeV 2°®Pb ion in the Coulomb field of a 97 Au nucleus. The
trajectory for elastic scattering is simple to calculate since neither nucleus is excited and the total energy and
momenta are conserved. However, usually one of these nuclei will be internally excited by the electromagnetic
interaction. This is called Coulomb excitation. The effect of the Coulomb excitation usually can be treated as
a perturbation by assuming that the trajectory is given by the elastic scattering solution and then calculate
the excitation probability assuming the Coulomb excitation of the nucleus is a small perturbation to the
trajectory.
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2.14 Newton’s Law of Gravitation

Gravitation plays a fundamental role in classical mechan-
ics as well as being an important example of a conservative
central (%)2 force. Although you may not be familiar with
use of vector calculus for the gravitational field g, it is as- p(r)dxdy'dz’  yp’ m
sumed that you have met the identical approach for studies
of the electric field E in electrostatics. The primary dif-
ference is that mass m replaces charge e, and gravitational v
field g replaces the electric field E. This chapter reviews the
concepts of vector calculus as used for study of conservative
inverse-square law central fields. y
In 1666 Newton formulated the Theory of Gravitation
which he eventually published in the Principia in 1687. New-
ton’s Law of Gravitation states that each mass particle at-
tracts every other particle in the universe with a force that
varies directly as the product of the mass and inversely as
the square of the distance between them. That is, the force
on a gravitational point mass m¢ produced by a mass Mq  Figure 2.7: Gravitational force on mass m due
to an infinitessimal volume element of the mass

mGMGi‘\ (2.143)  density distribution.

F,,.=-G 2
where T is the unit vector pointing from the gravitational

mass Mg to the gravitational mass m¢g as shown in figure 2.7. Note that the force is attractive, that
is, it points toward the other mass. This is in contrast to the repulsive electrostatic force between two
similar charges. Newton’s law was verified by Cavendish using a torsion balance. The experimental value of
G = (6.6726 +0.0008) x 107N - m? /kg?.

The gravitational force between point particles can be extended to finite-sized bodies using the fact that
the gravitational force field satisfies the superposition principle, that is, the net force is the vector sum of the
individual forces between the component point particles. Thus the force summed over the mass distribution
is

F(r),, = —Gmg . ”;—g"ﬁ (2.144)
1=1 ¢

where r; is the vector from the gravitational mass mg; to the gravitational mass m¢ at the position r.
For a continuous gravitational mass distribution ps (r'), the net force on the gravitational mass mq at
the location r can be written as

F,, (r) = —Gmg /V %dv’ (2.145)

where dv’ is the volume element at the point r’ as illustrated in figure 2.7.

2.14.1 Gravitational and inertial mass
Newton’s Laws use the concept of inertial mass m; = m in relating the force F to acceleration a
F=mja (2.146)

and momentum p to velocity v
p=mrv (2.147)

That is, inertial mass is the constant of proportionality relating the acceleration to the applied force.
The concept of gravitational mass mq is the constant of proportionality between the gravitational force
and the amount of matter. That is, on the surface of the earth, the gravitational force is assumed to be

Fo = mg [—GZ ";—g’f] = meg (2.148)
i=1 1
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where g is the gravitational field which is a position-dependent force per unit gravitational mass pointing
towards the center of the Earth. The gravitational mass is measured when an object is weighed.

Newton’s Law of Gravitation leads to the relation for the gravitational field g (r) at the location r due
to a gravitational mass distribution at the location r’ as given by the integral over the gravitational mass

density pg
pe () (F-7)
v (T-T)

The acceleration of matter in a gravitational field relates the gravitational and inertial masses

FG =mgg =mja (2.150)
Thus
a=_C (2.151)
mr

That is, the acceleration of a body depends on the gravitational strength g and the ratio of the gravitational
and inertial masses. It has been shown experimentally that all matter is subject to the same acceleration
in vacuum at a given location in a gravitational field. That is, 7% is a constant common to all materials.
Galileo first showed this when he dropped objects from the Tower of Pisa. Modern experiments have shown
that this is true to 5 parts in 10'3.

The exact equivalence of gravitational mass and inertial mass is called the weak principle of equiva-
lence which underlies the General Theory of Relativity as discussed in chapter 17. It is convenient to use
the same unit for the gravitational and inertial masses and thus they both can be written in terms of the
common mass symbol m.

m;=mg=m (2.152)

Therefore the subscripts G and I can be omitted in equations 2.150 and 2.152. Also the local acceleration

due to gravity a can be written as
a=g (2.153)

The gravitational field g = % has units of N/kg in the MKS system while the acceleration a has units m/s.

2.14.2 Gravitational potential energy U

Chapter 2.10.2 showed that a conservative field can be expressed in
terms of the concept of a potential energy U(r) which depends on
position. The potential energy difference AU,_,; between two points
r, and rp, is the work done moving from a to b against a force F. That
is:

Th
AUqp = Uty — U(ry) = —/ F-dl (2.154)

In general, this line integral depends on the path taken. mg

Consider the gravitational field produced by a single point mass
m1. The work done moving a mass mg from r, to r, in this gravita-
tional field can be calculated along an arbitrary path shown in figure
2.8 by assuming Newton’s law of gravitation. Then the force on my
due to point mass m; is;

Mo & (2.155) . ,
r2 Figure 2.8: Work done against a

force field moving from a to b.

F=-G

Expressing dl in spherical coordinates dl =drf+rdf0-+r sin 9dq§<2> gives
the path integral (2.154) from (r,0,¢,) to (ry0pd,) is
m

1Mo~ ~
5T - rdr
r

b b b
AU, = —/ F-dI:/ [GmlTO(f--?dr+f~9d9+rsin9f~-<}bd¢)] :G/
a a r (e

1 1
= —Gm1m0 |:’I"_b - 'I"_:| (2156)
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since the scalar product of the unit vectors ¥ - T = 1. Note that the second two terms also cancel since
0=+ (,‘b = 0 since the unit vectors are mutually orthogonal. Thus the line integral just depends only on
the starting and ending radii and is independent of the angular coordinates or the detailed path taken between
(raba0,) and (ryBydy) -

Consider the Principle of Superposition for a gravitational field produced by a set of n point masses. The
line integral then can be written as:

ry n Ty n
AU, = / Foe-dl=— Z/ F, dl= ZAU};_,,) (2.157)
Ta i=1"T"a i=1
Thus the net potential energy difference is the sum of the contributions from each point mass producing the
gravitational force field. Since each component is conservative, then the total potential energy difference also
must be conservative. For a conservative force, this line integral is independent of the path taken, it depends
only on the starting and ending positions, r, and r,. That is, the potential energy is a local function
dependent only on position. The usefulness of gravitational potential energy is that, since the gravitational
force is a conservative force, it is possible to solve many problems in classical mechanics using the fact
that the sum of the kinetic energy and potential energy is a constant. Note that the gravitational field is
conservative, since the potential energy difference AU, is independent of the path taken. It is conservative
because the force is radial and time independent, it is not due to the Tl dependence of the field.

2.14.3 Gravitational potential ¢

Using F = mgg gives that the change in potential energy due to moving a mass mg from a to b in a
gravitational field g is:

a—b —

b
AU = —myg / et - dl (2.158)

Note that the probe mass mg factors out from the integral. It is convenient to define a new quantity called
gravitational potential ¢ where

net Tb

N . (2.159)
mo Ta

That is; gravitational potential difference is the work that must be done, per unit mass, to move from a to

b with no change in kinetic energy. Be careful not to confuse the gravitational potential energy difference

AU,_,, and gravitational potential difference A¢,_,;,, that is, AU has units of energy, Joules, while A¢ has

units of Joules/kg.

The gravitational potential is a property of the gravitational force field; it is given as minus the line
integral of the gravitational field from a to b. The change in gravitational potential energy for moving a
mass my from a to b is given in terms of gravitational potential by:

AU, = moA¢l (2.160)

a—b

Superposition and potential

Previously it was shown that the gravitational force is conservative for the superposition of many masses.
To recap, if the gravitational field
8net = 81 + 82 + 83 (2161)

T T Ty T
ngib = */ net * dl = */ g1 dl — / g2 - dl — / g3 - Zn¢a—>b (2162)

a a a a

then

Thus gravitational potential is a simple additive scalar field because the Principle of Superposition applies.
The gravitational potential, between two points differing by h in height, is gh. Clearly, the greater g or h,
the greater the energy released by the gravitational field when dropping a body through the height h. The

unit of gravitational potential is the < ‘,?;le
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2.14.4 Potential theory

The gravitational force and electrostatic force both obey the inverse square law, for which the field and
corresponding potential are related by:

Th
Ad,_p = —/ g-dl (2.163)
For an arbitrary infinitessimal element distance dl the change in gravitational potential d¢ is

dp = —g - dl (2.164)

Using cartesian coordinates both g and dl can be written as

g =1, +jgy + kg, dl = idz + jdy + kdz (2.165)

Taking the scalar product gives:

dp = —g-dl = —g,dx — g,dy — g.dz (2.166)

Differential calculus expresses the change in potential d¢ in terms of partial derivatives by:

<15 0% ..
do = —d — 2.167
0= et g, W5, (2.167)
By association, 2.166 and 2.167 imply that
8(;5 8(15 8(;5

. = = L, = 2.168
g 81‘ 9y ay 9 82 ( )

Thus on each axis, the gravitational field can be written as minus the gradient of the gravitational potential.
In three dimensions, the gravitational field is minus the total gradient of potential and the gradient of the
scalar function ¢ can be written as:

g= -V (2.169)
In cartesian coordinates this equals
$0¢ 399 199
= |[i—= +j— = 2.170
o Hig, Tk, (2.170)

Thus the gravitational field is just the gradient of the gravitational potential, which always is perpendicular
to the equipotentials. Skiers are familiar with the concept of gravitational equipotentials and the fact that
the line of steepest descent, and thus maximum acceleration, is perpendicular to gravitational equipotentials
of constant height. The advantage of using potential theory for inverse-square law forces is that scalar
potentials replace the more complicated wvector forces, which greatly simplifies calculation. Potential theory
plays a crucial role for handling both gravitational and electrostatic forces.

2.14.5 Curl of the gravitational field

It has been shown that the gravitational field is conservative, that is
AU,_ is independent of the path taken between a and b. Therefore,
equation 2.159 gives that the gravitational potential is independent of 1 b
the path taken between two points a and b. Consider two possible paths
between a and b as shown in figure 2.9. The line integral from a to b via
route 1 is equal and opposite to the line integral back from b to a via 4
route 2 if the gravitational field is conservative as shown earlier.
A better way of expressing this is that the line integral of the gravita-
tional field is zero around any closed path. Thus the line integral between
a and b, via path 1, and returning back to a, via path 2, are equal and Figure 2.9: Circulation of the
opposite. That is, the net line integral for a closed loop is zero gravitational field.
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]{gnet dl=0 (2.171)

which is a measure of the circulation of the gravitational field. The fact that the circulation equals zero
corresponds to the statement that the gravitational field is radial for a point mass.
Stokes Theorem, discussed in appendix H3, states that

fF.cﬂ:AA,,ea (V x F)-dS (2.172)
C

ounded
by
C

Thus the zero circulation of the gravitational field can be rewritten as

fgwil:AArw (Vxg)-dS=0 (2.173)
e}

ounded
by
C

Since this is independent of the shape of the perimeter C', therefore
Vxg=0 (2.174)

That is, the gravitational field is a curl-free field.
A property of any curl-free field is that it can be expressed as the gradient of a scalar potential ¢ since

VxV¢p=0 (2.175)
Therefore, the curl-free gravitational field can be related to a scalar potential ¢ as
g=-Vo¢ (2.176)

Thus ¢ is consistent with the above definition of gravitational potential ¢ in that the scalar product

Aqsﬁb:—/abgm-dl:Lb(V¢)-d1=LbZSdei:/abdqs (2.177)

An identical relation between the electric field and electric potential applies for the inverse-square law
electrostatic field.

Reference potentials:

Note that only differences in potential energy, U, and gravitational potential, ¢, are meaningful, the absolute
values depend on some arbitrarily chosen reference. However, often it is useful to measure gravitational
potential with respect to a particular arbitrarily chosen reference point ¢, such as to sea level. Aircraft
pilots are required to set their altimeters to read with respect to sea level rather than their departure
airport. This ensures that aircraft leaving from say both Rochester, 559 msl, and Denver 5000 msl, have
their altimeters set to a common reference to ensure that they do not collide. The gravitational force is the
gradient of the gravitational field which only depends on differences in potential, and thus is independent of
any constant reference.

Gravitational potential due to continuous distributions of charge Suppose mass is distributed
over a volume v with a density p at any point within the volume. The gravitational potential at any field
point p due to an element of mass dm = pdv at the point p’ is given by:

/ d /

N —G/ p)dv' (2.178)
v Tp'p

This integral is over a scalar quantity. Since gravitational potential ¢ is a scalar quantity, it is easier to

compute than is the vector gravitational field g . If the scalar potential field is known, then the gravitational

field is derived by taking the gradient of the gravitational potential.
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2.14.6 Gauss’s Law for Gravitation

The flux ® of the gravitational field g through a surface
S, as shown in figure 2.10, is defined as

o= / g-dS (2.179)
S

Note that there are two possible perpendicular directions
that could be chosen for the surface vector dS. Using
Newton’s law of gravitation for a point mass m the flux
through the surface S is

@z—Gm/r.;iS
s

r

(2.180)

Note that the solid angle subtended by the surface dS
at an angle 0 to the normal from the point mass is given
by

cos0dS T-dS

dQ = 2 = o (2.181)
Thus the net gravitational flux equals Figure 2.10: Flux of the gravitational field through
an infinitessimal surface element dS.
b= —Gm / 4o (2.182)
s

Consider a closed surface where the direction of the surface vector dS is defined as outwards. The net
flux out of this closed surface is given by

o = —Gm% = fs - —Gm?{ dQ = —GmAn (2.183)
s T s

This is independent of where the point mass lies within the closed surface or on the shape of the closed
surface. Note that the solid angle subtended is zero if the point mass lies outside the closed surface. Thus
the flux is as given by equation 2.183 if the mass is enclosed by the closed surface, while it is zero if the mass
is outside of the closed surface.

Since the flux for a point mass is independent of the location of the mass within the volume enclosed by
the closed surface, and using the principle of superposition for the gravitational field, then for n enclosed
point masses the net flux is

® = / g-dS=—-4rG» m, (2.184)
This can be extended to continuous mass distributions, with local mass density p, giving that the net flux
o= / g-dS = —4rG l dpdv (2.185)
S enctose
volume

Gauss’s Divergence Theorem was given in appendix H2 as

cszépdsz/ V . Fdv (2.186)
S Enclosed

volume

Applying the Divergence Theorem to Gauss’s law gives that

o — .dS = V - gdv = —4nG d
figg /Enclosed gav g enclosedp v

volume volume

or

. 4 = 2.1
ﬁ%dosed [V g+ 4nGp]dv =0 (2.187)

volume
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This is true independent of the shape of the surface, thus the divergence of the gravitational field
V.g=—-4nGp (2.188)

This is a statement that the gravitational field of a point mass has a T% dependence.
Using the fact that the gravitational field is conservative, this can be expressed as the gradient of the
gravitational potential ¢,

g=_Vo (2.189)
and Gauss’s law, then becomes
V -Vo¢=4rGp (2.190)
which also can be written as Poisson’s equation
V3¢ = 4nGp (2.191)

Knowing the mass distribution p allows determination of the potential by solving Poisson’s equation.
A special case that often is encountered is when the mass distribution is zero in a given region. Then the
potential for this region can be determined by solving Laplace’s equation with known boundary conditions.

Vi =0 (2.192)

For example, Laplace’s equation applies in the free space between the masses. It is used extensively in elec-
trostatics to compute the electric potential between charged conductors which themselves are equipotentials.

2.14.7 Condensed forms of Newton’s Law of Gravitation

The above discussion has resulted in several alternative expressions of Newton’s Law of Gravitation that will
be summarized here. The most direct statement of Newton’s law is

g (r) = —G/Vp(zlr)_(i?r;;)dv’ (2.193)

An elegant way to express Newton’s Law of Gravitation is in terms of the flux and circulation of the
gravitational field. That is,
Flux:

o= / g-dS = —47TG/ pdv (2.194)
S enclosed

volume

Circulation:

fgnet dl=0 (2.195)

The flux and circulation are better expressed in terms of the vector differential concepts of divergence
and curl.
Divergence:
V.g=—47Gp (2.196)

Curl:
Vxg=0 (2.197)

Remember that the flux and divergence of the gravitational field are statements that the field between
point masses has a T% dependence. The circulation and curl are statements that the field between point
masses is radial.

Because the gravitational field is conservative it is possible to use the concept of the scalar potential
field ¢. This concept is especially useful for solving some problems since the gravitational potential can be
evaluated using the scalar integral

Ab =G / p)dv’ (2.198)

Tp'p
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An alternate approach is to solve Poisson’s equation if the boundary values and mass distributions are known
where Poisson’s equation is:
V%p = 4rGp (2.199)

These alternate expressions of Newton’s law of gravitation can be exploited to solve problems. The
method of solution is identical to that used in electrostatics.

2.16 Example: Field of a uniform sphere

Consider the simple case of the gravitational field due to a uniform sphere of matter of radius R and

mass M. Then the volume mass density
3M

- 4T R3

The gravitational field and potential for this uniform sphere of matter can be derived three ways;
a) The field can be evaluated by directly integrating over the volume

g(r)= —G/S%dvl

b) The potential can be evaluated directly by integration of

/ !
R / pp)av’
P s  Tpp

p

and then
g=-Vo
¢) The obuvious spherical symmetry can be used in conjunction R
with Gauss’s law to easily solve this problem.
| -omr oM
/ g-dS = —47TG/ pdv R? r2
S enclosed
volume
4rr2g (r) = —4rGM (r>R)
That is: for r > R -GM | 3R?-r? |
M o 2R -GM
g=—-G =T (r>R) "
Similarly, for r < R
Gravitational field g and gravitational
4w tential @ of a uniformly-dense
drrig (r) = —1° <R PO A
g () 37 (r<R) spherical mass distribution of radius R.

That is: v
g= —Gﬁr (r<R)

The field inside the Earth is radial and is proportional to the distance from the center of the Earth. This
is Hooke’s Law, and thus ignoring air drag, any body dropped down a hole through the center of the Earth
will undergo harmonic oscillations with an angular frequency of wo = w/%—ﬁ/[ = \/%. This gives a period of
oscillation of 1.4 hours, which is about the length of a P235 lecture in classical mechanics, which may seem
like a long time.

Clearly method (c) is much simpler to solve for this case. In general, look for a symmetry that allows
identification of a surface upon which the magnitude and direction of the field is constant. For such cases
use Gauss’s law. Otherwise use methods (a) or (b) whichever one is easiest to apply. Further examples will
not be given here since they are essentially identical to those discussed extensively in electrostatics.
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2.15 Summary

Newton’s Laws of Motion:
A cursory review of Newtonian mechanics has been presented. The concept of inertial frames of reference
was introduced since Newton’s laws of motion apply only to inertial frames of reference.
Newton’s Law of motion
dp
F=—
dt
leads to second-order equations of motion which can be difficult to handle for many-body systems.
Solution of Newton’s second-order equations of motion can be simplified using the three first-order in-
tegrals coupled with corresponding conservation laws. The first-order time integral for linear momentum
is

(2.6)

2 2
dp;
The first-order time integral for angular momentum is
dLi _ P, /2N-dt—/2dLidt—(L L) (2.16)
da "7 ar A A '

The first-order spatial integral is related to kinetic energy and the concept of work. That is

dT;
F, =
dI‘i

2
/ Fi . dI‘i = (T2 — Tl)i (221)
1

The conditions that lead to conservation of linear and angular momentum and total mechanical energy
were discussed for many-body systems. The important class of conservative forces was shown to apply if
the position-dependent force do not depend on time or velocity, and if the work done by a force ff F; - dr;
is independent of the path taken between the initial and final locations. The total mechanical energy is a
constant of motion when the forces are conservative.

It was shown that the concept of center of mass of a many-body or finite sized body separates naturally
for all three first-order integrals. The center of mass is that point about which

Z m;r; = /r'pdV =0. (Centre of mass definition)

where r} is the vector defining the location of mass m; with respect to the center of mass. The concept of
center of mass greatly simplifies the description of the motion of finite-sized bodies and many-body systems
by separating out the important internal interactions and corresponding underlying physics, from the trivial
overall translational motion of a many-body system..

The Virial theorem states that the time-averaged properties are related by

(T) = —% <Z F; - ri> (2.86)

It was shown that the Virial theorem is useful for relating the time-averaged kinetic and potential energies,
especially for cases involving either linear or inverse-square forces.

Typical examples were presented of application of Newton’s equations of motion to solving systems
involving constant, linear, position-dependent, velocity-dependent, and time-dependent forces, to constrained
and unconstrained systems, as well as systems with variable mass. Rigid-body rotation about a body-fixed
rotation axis also was discussed.

It is important to be cognizant of the following limitations that apply to Newton’s laws of motion:

1) Newtonian mechanics assumes that all observables are measured to unlimited precision, that is ¢, E,
P, r are known exactly. Quantum physics introduces limits to measurement due to wave-particle duality.

2) The Newtonian view is that time and position are absolute concepts. The Theory of Relativity shows
that this is not true. Fortunately for most problems v << ¢ and thus Newtonian mechanics is an excellent
approximation.
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3) Another limitation, to be discussed later, is that it is impractical to solve the equations of motion for
many interacting bodies such as all the molecules in a gas. Then it is necessary to resort to using statistical
averages, this approach is called statistical mechanics.

Newton’s work constitutes a theory of motion in the universe that introduces the concept of causality.
Causality is that there is a one-to-one correspondence between cause of effect. Each force causes a known
effect that can be calculated. Thus the causal universe is pictured by philosophers to be a giant machine
whose parts move like clockwork in a predictable and predetermined way according to the laws of nature. This
is a deterministic view of nature. There are philosophical problems in that such a deterministic viewpoint
appears to be contrary to free will. That is, taken to the extreme it implies that you were predestined to
read this book because it is a natural consequence of this mechanical universe!

Newton’s Laws of Gravitation

Newton’s Laws of Gravitation and the Laws of Electrostatics are essentially identical since they both
involve a central inverse square-law dependence of the forces. The important difference is that the gravi-
tational force is attractive whereas the electrostatic force between identical charges is repulsive. That is,
the gravitational constant G is replaced by —ﬁ, and the mass density p becomes the charge density for
the case of electrostatics. As a consequence it is unnecessary to make a detailed study of Newton’s law of
gravitation since it is identical to what has already been studied in your accompanying electrostatic courses.
Table 2.1 summarizes and compares the laws of gravitation and electrostatics. For both gravitation and
electrostatics the field is central and conservative and depends as r—12f~

The laws of gravitation and electrostatics can be expressed in a more useful form in terms of the flux and
circulation of the gravitational field as given either in the vector integral or vector differential forms. The
radial independence of the flux, and corresponding divergence, is a statement that the fields are radial and
have a T%f' dependence. The statement that the circulation, and corresponding curl, are zero is a statement
that the fields are radial and conservative.

Table 2.1; Comparison of Newton’s law of gravitation and electrostatics.

Gravitation Electrostatics

Force field g= % E= FTE
Density Mass density p (r') Charge density p(r)
Conservative central field | g (r) = -G [, ?1'71")2)6&] EF) =5z v %dv
Flux o= fs g-dS = —4nG fenc’losed pdv | @ = fs -dS = ; fenc’losed pdv
Circulation ]{gnet -dl=0 7{ net - dl =10
Divergence V-g=—-4nGp V- -E= }Up
Curl Vxg=0 VxE=0

. dv’ "dv
Potential Ay, ., =G [, It L ) Apoy .y = 47360 I, %
Poisson’s equation V¢ = 4nGp Vi = —;

Both the gravitational and electrostatic central fields are conservative making it possible to use the
concept of the scalar potential field ¢. This concept is especially useful for solving some problems since the
potential can be evaluated using a scalar integral. An alternate approach is to solve Poisson’s equation if the
boundary values and mass distributions are known. The methods of solution of Newton’s law of gravitation
are identical to those used in electrostatics and are readily accessible in the literature.
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Chapter 3

Linear oscillators

3.1 Introduction

Oscillations are a ubiquitous feature in nature. Examples are periodic motion of planets, the rise and fall
of the tides, water waves, pendulum in a clock, musical instruments, sound waves, electromagnetic waves,
and wave-particle duality in quantal physics. Oscillatory systems all have the same basic mathematical form
although the names of the variables and parameters are different. The classical linear theory of oscillations
will be assumed in this chapter since: (1) The linear approximation is well obeyed when the amplitudes of
oscillation are small, that is, the restoring force obeys Hooke’s Law. (2) The Principle of Superposition
applies. (3) The linear theory allows most problems to be solved explicitly in closed form. This is in contrast
to non-linear system where the motion can be complicated and even chaotic as discussed in chapter 4.

3.2 Linear restoring forces

An oscillatory system requires that there be a stable equilibrium about
which the oscillations occur. Consider a conservative system with potential
energy U for which the force is given by U(x)

F=_-VU (3.1) -

Figure 3.1 illustrates a conservative system that has three locations at
which the restoring force is zero, that is, where the gradient of the potential 3
is zero. Stable oscillations occur only around locations 1 and 3 whereas
the system is unstable at the zero gradient location 2. Point 2 is called a | !
separatriz in that an infinitessimal displacement of the particle from this % 035 w15 a0 a5 3 35 4
separatrix will cause the particle to diverge towards either minimum 1 or
3 depending on which side of the separatrix the particle is displaced.

The requirements for stable oscillations about any point zy are that
the potential energy must have the following properties. . | -

Stability requirements dimensional potential U(x).

au =0

1) The potential has a stable position for which the restoring force is zero, i.e. (H)z:zo

Figure 3.1: Stability for a one-

2) The potential U must be positive and an even function of displacement x — xy. That is. (%) >0
)

where n is even.
The requirement for the restoring force to be linear is that the restoring force for perturbation about a
stable equilibrium at zg is of the form
F = —a(z—x9) = ma (3.2)
The potential energy function for a linear oscillator has a pure parabolic shape about the minimum location,
that is,

U:%@—%f (3.3)

49
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where zq is the location of the minimum.

Fortunately, oscillatory systems involve small amplitude oscillations about a stable minimum. For weak
non-linear systems, where the amplitude of oscillation Az about the minimum is small, it is useful to make
a Taylor expansion of the potential energy about the minimum. That is

dU (zo) N Az? d?U (z0) n Az? d3U () n Azt d*U (xg) n

Azx) = A 4

UlAz) =Ulwo) + Az dx 2! dz? 3! da? 4! dz? (34)
By definition, at the minimum % = 0, and thus equation 3.3 can be written as
Ax? 2U Azx? PBU Azt d*U

AU = U(Ag) — Ulzg) = 24U o) | Ac? dTU(20)  Aa” dTU (zo) (3.5)

2! dx? 3! dx3 4! dx?t

2
For small amplitude oscillations, the system is linear if the second-order AQ—’fz d gz(f o) term in equation 3.2 is

dominant.

The linearity for small amplitude oscillations greatly simplifies description of the oscillatory motion and
complicated chaotic motion is avoided. Most physical systems are approximately linear for small amplitude
oscillations, and thus the motion close to equilibrium approximates a linear harmonic oscillator.

3.3 Linearity and superposition

An important aspect of linear systems is that the solutions obey the Principle of Superposition, that is, for
the superposition of different oscillatory modes, the amplitudes add linearly. The linearly-damped linear
oscillator is an example of a linear system in that it involves only linear operators, that is, it can be written
in the operator form (appendix F.2)

d? d B
pre) + FE +w: | z(t) = Acoswt (3.6)

The quantity in the brackets on the left hand side is a linear operator that can be designated by L. where
Lxz(t) = F(t) (3.7)

An important feature of linear operators is that they obey the principle of superposition. This property
results from the fact that linear operators are distributive, that is

L($1 +SC2) :]]_4(2171) +]L(ZL’2) (38)
Therefore if there are two solutions x1(t) and x2(t) for two different forcing functions Fy(t) and F»(t)

Lz, (t) = Fi(t) (3.9)
L.%'Q(t) = FQ(t)

then the addition of these two solutions, with arbitrary constants, also is a solution for linear operators.
L(O&lxl + Oég.’L‘g) =a1 F (t) + as (t) (3.10)

In general then

N N
L (Z anxn(t)> = (Z anFn(t)> (3.11)

n=1

The left hand bracket can be identified as the linear combination of solutions
N
2(t) = anwn(t) (3.12)
n=1

while the driving force is a linear superposition of harmonic forces

F(t) = Z an I (t) (3.13)
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Thus these linear combinations also satisfy the general linear equation
Lz (t) = F(t) (3.14)

Applicability of the Principle of Superposition to a system provides a tremendous advantage for handling
and solving the equations of motion of oscillatory systems.

3.4 Geometrical representations of dynamical motion

The powerful pattern-recognition capabilities of the human brain, coupled with geometrical representations
of the motion of dynamical systems, provide a sensitive probe of periodic motion. The geometry of the
motion often can provide more insight into the dynamics than inspection of mathematical functions. A
system with n degrees of freedom is characterized by locations ¢;, velocities ¢;, and momenta p;, in addition
to the time ¢ and instantaneous energy H(t). Geometrical representations of the dynamical correlations are
illustrated by the configuration space and phase space representations of these 2n + 2 variables.

3.4.1 Configuration space (¢;, g, 1)

A configuration space plot shows the correlated motion of two spatial coordinates ¢; and g; averaged over
time. An example is the two-dimensional linear oscillator with two equations of motion and solutions

mi+ kyz =0 mij+ kyy =0 (3.15)
x (t) = Acos (wyt) y (t) = Bcos (wyt — 9) (3.16)
where w = \/%. For unequal restoring force constants, k, # k,, the trajectory executes complicated

Lissajous figures that depend on the angular frequencies w,, Wy, and the phase factor §. When the ratio of
the angular frequencies along the two axes is rational, that is 2= is a rational fraction, then the curve will
repeat at regular intervals as shown in figure 3.2, and this shape depends on the phase difference. Otherwise
the trajectory uniformly traverses the whole rectangle.

5=2m/5 B TES

Figure 3.2: Configuration plots of (z,y) where x = cos(4t) and y = cos(5t — J) at four different phase values
0. The curves are called Lissajous figures



52 CHAPTER 3. LINEAR OSCILLATORS

3.4.2 State space, (¢;, §;,t)

Visualization of a trajectory is enhanced by correlation of configuration ¢; and it’s corresponding velocity
¢; which specifies the direction of the motion. The state space representation' is especially valuable when
discussing Lagrangian mechanics which is based on the Lagrangian L(q, q,t).

The free undamped harmonic oscillator provides a simple illustration of state space. Consider a mass m
attached to a spring with linear spring constant k for which the equation of motion is

di
—kr =mi = mi— 3.17
z=mi=mi (3.17)
By integration this gives
- + L= p (3.18)
2 P ‘

The first term in equation 3.18 is the kinetic energy, the second term is the potential energy, and E is the
total energy which is conserved for this system. This equation can be expressed in terms of the state space

coordinates as ) )
T T

S —— 3.19

& @ o
This corresponds to the equation of an ellipse for a state-space plot of & versus = as shown in figure 3.3upper.
The elliptical paths shown correspond to contours of constant total energy which is partitioned between
kinetic and potential energy. For the coordinate axis shown, the motion of a representative point will be in
a clockwise direction as the total oscillator energy is redistributed between potential to kinetic energy. The
area of the ellipse is proportional to the total energy F.

3.4.3 Phase space, (g, p;,t)

Phase space, which was introduced by J.W. Gibbs for the field of sta-
tistical mechanics, provides a fundamental graphical representation in
classical mechanics. The phase space coordinates ¢;p; are the conju-
gate coordinates (g, p) and are fundamental to Hamiltonian mechanics
which is based on the Hamiltonian H(q, p,t). For a conservative system,
only one phase-space curve passes through any point in phase space
like the flow of an incompressible fluid. This makes phase space more
useful than state space where many curves pass through any location.
Lanczos [La49] defined an extended phase space using four-dimensional
relativistic space-time as discussed in chapter 17.

Since p, = ma for the non-relativistic, one-dimensional, linear os-
cillator, then equation 3.19 can be rewritten in the form

A

2 2
Py T

2mE (%)

=1 (3.20)

U-U-

A

This is the equation of an ellipse in the phase space diagram shown in
Fig.3.3-lower which looks identical to Fig 3.3-upper where the ordinate
variable p, = mz. That is, the only difference is the phase-space coor-
dinates (z,p,) replace the state-space coordinates (z,4). State space
plots are used extensively in this chapter to describe oscillatory mo-
tion. Although phase space is more fundamental, both state space and Figure 3.3: State space (upper),
phase space plots provide useful representations for characterizing and and phase space (lower) diagrams,
elucidating a wide variety of motion in classical mechanics. The follow- for the linear harmonic oscillator.
ing discussion of the undamped simple pendulum illustrates the general

features of state space.

1A universal name for the (q, ) representation has not been adopted in the literature. Therefore this book has adopted
the name "state space". Lanczos [La49] uses the term "state space" to refer to the extended phase space (q, p,t) discussed in
chapter 17.
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3.4.4 Plane pendulum

Consider a simple plane pendulum of mass m attached to a string of length [ in a uniform gravitational field
g. There is only one generalized coordinate, #. Since the moment of inertia of the simple plane-pendulum is
I = mi?, then the kinetic energy is

T= %ml292 (3.21)
and the potential energy relative to the bottom dead center is
U =mgl (1 — cosb) (3.22)
Thus the total energy equals
E= 1m12tl92 + mgl(1l — cosf) = P} + mgl (1 — cos0) (3.23)
2 2ml?

where F is a constant of motion. Note that the angular momentum py is not a constant of motion since the
angular acceleration pg explicitly depends on 6.

It is interesting to look at the solutions for the equation of motion for a plane pendulum on a (9, 9)

state space diagram shown in figure 3.4. The curves shown are equally-spaced contours of constant total
energy. Note that the trajectories are ellipses only at very small angles where 1—cos 6 &~ 62, the contours are
non-elliptical for higher amplitude oscillations. When the energy is in the range 0 < E < 2mgl the motion
corresponds to oscillations of the pendulum about § = 0. The center of the ellipse is at (0,0) which is a
stable equilibrium point for the oscillation. However, when |E| > 2mgl there is a phase change to rotational
motion about the horizontal axis, that is, the pendulum swings around and over top dead center, i.e. it
rotates continuously in one direction about the horizontal axis. The phase change occurs at E = 2mgl. and
is designated by the separatrix trajectory.

Figure 3.4 shows two cycles for 6 to better illustrate
the cyclic nature of the phase diagram. The closed loops,
shown as fine solid lines, correspond to pendulum oscil-
lations about § = 0 or 27 for £ < 2mgl. The dashed
lines show rolling motion for cases where the total en-
ergy E > 2mgl. The broad solid line is the separatrix
that separates the rolling and oscillatory motion. Note
that at the separatrix, the kinetic energy and 6 are zero
when the pendulum is at top dead center which occurs
when 6§ = +x.The point (7,0) is an unstable equilib-
rium characterized by phase lines that are hyperbolic
to this unstable equilibrium point. Note that 0 = +=
and —7 correspond to the same physical point, that is,
the phase diagram is better presented on a cylindri-
cal phase space representation since 0 is a cyclic vari-
able that cycles around the cylinder whereas 0 oscillates
equally about zero having both positive and negative val- Figure 3.4: State space diagram for a plane pendu-
ues. The state-space diagram can be Wrapped around a lum. The 0 axis is in units of 7 radians. Note that
cylinder, then the unstable and stable equilibrium points € = +m and —7 correspond to the same physical
will be at diametrically opposite locations on the surface point, that is the phase diagram should be rolled
of the cylinder at & = 0. For small oscillations about into a cylinder connected at § = +.
equilibrium, also called librations, the correlation be-
tween 6 and 0 is given by the clockwise closed loops wrapped on the cylindrical surface, whereas for energies
|E| > 2mgl the positive § corresponds to counterclockwise rotations while the negative 6 corresponds to
clockwise rotations.

State-space diagrams will be used for describing oscillatory motion in chapters 3 and 4. Phase space is
used in statistical mechanics in order to handle the equations of motion for ensembles of ~ 10?? independent
particles since momentum is more fundamental than velocity. Rather than try to account separately for
the motion of each particle for an ensemble, it is best to specify the region of phase space containing the
ensemble. If the number of particles is conserved, then every point in the initial phase space must transform
to corresponding points in the final phase space. This will be discussed in chapters 8.3 and 15.2.7.
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3.5 Linearly-damped free linear oscillator

3.5.1 General solution

All simple harmonic oscillations are damped to some degree due to energy dissipation via friction, viscous
forces, or electrical resistance etc. The motion of damped systems is not conservative in that energy is
dissipated as heat. As was discussed in chapter 2 the damping force can be expressed as

Fp(v) = —f(v)v (3.24)

where the velocity dependent function f(v) can be complicated. Fortunately there is a very large class of
problems in electricity and magnetism, classical mechanics, molecular, atomic, and nuclear physics, where
the damping force depends linearly on velocity which greatly simplifies solution of the equations of motion.
This chapter discusses the special case of linear damping.

Consider the free simple harmonic oscillator, that is, assuming no oscillatory forcing function, with a

linear damping term Fp(v) = —bv where the parameter b is the damping factor. Then the equation of
motion is
—kz — bt = mi (3.25)
This can be rewritten as
i4+Ti+wiz=0 (3.26)
where the damping parameter
b
'=— 3.27
" (3.27)

and the characteristic angular frequency

wo = \/g (3.28)

The general solution to the linearly-damped free oscillator is obtained by inserting the complex trial
solution z = zpe™*. Then

(iw)? 20e™ + iwlze™ + wizge™t = 0 (3.29)
This implies that
w? —iwl — w2 =0 (3.30)
The solution is
T r\?
we =iy +4/wi — (5) (3.31)

The two solutions wy are complex conjugates and thus the solutions of the damped free oscillator are

z:zlei(i%Jr wg_@)z)t—i-zQei(i%_ wg_(%)2>t (3.32)

This can be written as
s=e () [21€"1 4 zge ™! (3.33)

where

w1 =1 jw2 - (g)Q (3.34)
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Underdamped motion w? = w? — (5)2 >0

When w? > 0, then the square root is real so the solution can be written taking the real part of z which
gives that equation 3.33 equals

2(t) = Ae= () cos (wyt — B) (3.35)

Where A and  are adjustable constants fit to the initial conditions. Therefore the velocity is given by

Lt

z(t) = —Ae™ 2" |wy sin (w1t — B) + gcos (wit — PB) (3.36)

This is the damped sinusoidal oscillation illustrated in figure 3.5upper. The solution has the following

characteristics:
a) The oscillation amplitude decreases exponentially with a time constant 7p = %

b) There is a small reduction in the frequency of the oscillation due to the damping leading to w; =

L2

Lo e/

0.8 0.6 04 B, S oy 0.4, 0.6 0.8 0

05T
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Figure 3.5: The amplitude-time dependence and state-space diagrams for the free linearly-damped harmonic
oscillator. The upper row shows the underdamped system for the case with damping I' = £2. The lower
row shows the overdamped (& > wo) [solid line] and critically damped (5 = w) [dashed line] in both cases
assuming that initially the system is at rest.
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Figure 3.6: Real and imaginary solutions wy of the damped harmonic oscillator. A phase transition occurs
at I' = 2wp. For T’ < 2wy (dashed) the two solutions are complex conjugates and imaginary. For T' > 2wy,
(solid), there are two real solutions wy and w_ with widely different decay constants where w, dominates
the decay at long times.

Overdamped case w? = w? — (g)2 <0

. . . , 2
In this case the square root of w? is imaginary and can be expressed as w} =i (g) — w2. Therefore the
solution is obtained more naturally by using a real trial solution z = zge*? in equation 3.33 which leads to
two roots
2
r r
w = — _— :l: — — (JJ2
+ 2 ( 9 ) o

Thus the exponentially damped decay has two time constants w; and w_.
x(t) = [Are™@+ + Age™ "] (3.37)

The time constant w% < i thus the first term A;e~“+? in the bracket decays in a shorter time than the

second term Aoe~“-t. As illustrated in figure 3.6 the decay rate, which is imaginary when underdamped, i.e.
% < w,, bifurcates into two real values wy for overdamped, i.e.% > w,. At large times the dominant term
when overdamped is for wy which has the smallest decay rate, that is, the longest decay constant 7, = i
There is no oscillatory motion for the overdamped case, it slowly moves monotonically to zero as shown in
fig 3.5lower. The amplitude decays away with a time constant that is longer than %

Critically damped w? = w? (g)Q =0

This is the limiting case where % = w, For this case the solution is of the form
2(t) = (A+ Bt)e (2" (3.38)

This motion also is non-sinusoidal and evolves monotonically to zero. As shown in figure 3.5 the critically-
damped solution goes to zero with the shortest time constant, that is, largest w. Thus analog electric meters
are built almost critically damped so the needle moves to the new equilibrium value in the shortest time
without oscillation.

It is useful to graphically represent the motion of the damped linear oscillator on either a state space
(z,2) diagram or phase space (p,,z) diagram as discussed in chapter 3.4. The state space plots for the
undamped, overdamped, and critically-damped solutions of the damped harmonic oscillator are shown in
figure 3.5. For underdamped motion the state space diagram spirals inwards to the origin in contrast to
critical or overdamped motion where the state and phase space diagrams move monotonically to zero.
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3.5.2 Energy dissipation

The instantaneous energy is the sum of the instantaneous kinetic and potential energies
1 5 1
E = S mi + §kx (3.39)

where x, and & are given by the solution of the equation of motion.
Consider the total energy of the underdamped system

1 . 1
E = §m$2 + amngQ (3.40)

where k = mw3. The average total energy is given by substitution for x and # and taking the average over
one cycle. Since

x(t) = Ae=(3)! cos (wit —P) (3.41)
Then the velocity is given by

z(t) = —Ae~ Tt [w1 sin (w1t — B) + g cos (w1t — B)] (3.42)

Inserting equations 3.41 and 3.42 into 3.40 gives a small amplitude oscillation about an exponential decay for
the energy E. Averaging over one cycle and using the fact that (sin 6 cos ) = 0, and <[sin 9]2> = <[cos 9]2> =

%, gives the time-averaged total energy as

2
(B) =e 1t 1mA2w2 + 1mA2 r + 1mA2oJ2 (3.43)
N 4 ! 2 4 0 ’
which can be written as
(E) = Ege ™" (3.44)

Note that the energy of the linearly damped free oscillator decays away with a time constant 7 = % That
is, the intensity has a time constant that is half the time constant for the decay of the amplitude of the
transient response. Note that the average kinetic and potential energies are identical, as implied by the
Virial theorem, and both decay away with the same time constant. This relation between the mean life 7
for decay of the damped harmonic oscillator and the damping width term I' occurs frequently in physics.
The damping of an oscillator usually is characterized by a single parameter ) called the Quality Factor

where ) )
__ Energy stored in the oscillator

= 3.45
Energy dissipated per radian ( )
The energy loss per radian is given by
dE 1 ET ET
AE= —— = — = ——— (3.46)
dt wy w1 2 r\2
Wo — (5)
where the numerator wy = /w2 — (%)2 is the frequency of the free damped linear oscillator.
Thus the Quality factor @ equals
Q= £ _ (3.47) ' Typical Q factors
AE T Earth, for earthquake wave | 250-1400
The larger the @ factor, the less damped is the system, and the Piano string 3000
greater is the number of cycles of the oscillation in the damped Crystal in digital watch 10%
wave train. Chapter 3.11.3 shows that the longer the wave train, Microwave cavity 10%
that is the higher is the @) factor, the narrower is the frequency Excited atom 107
distribution around the central value. The Mossbauer effect in Neutron star 1012
nuclear physics provides a remarkably long wave train that can LIGO laser 1013
be used to make high precision measurements. The high-Q) pre- [\[gssbauer effect in nucleus 102

cision of the LIGO laser interferometer was used in the first suc-
cessful observation of gravity waves in 2015. Table 3.1: Typical Q factors in nature.
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3.6 Sinusoidally-drive, linearly-damped, linear oscillator

The linearly-damped linear oscillator, driven by a harmonic driving force, is of considerable importance to
all branches of science and engineering. The equation of motion can be written as

F(t
F+Td+wie = % (3.48)

where F(t) is the driving force. For mathematical simplicity the driving force is chosen to be a sinusoidal
harmonic force. The solution of this second-order differential equation comprises two components, the
complementary solution (transient response), and the particular solution (steady-state response).

3.6.1 Transient response of a driven oscillator

The transient response of a driven oscillator is given by the complementary solution of the above second-order
differential equation

i+l +wizr =0 (3.49)

which is identical to the solution of the free linearly-damped harmonic oscillator. As discussed in section 3.5,
the solution of the linearly-damped free oscillator is given by the real part of the complex variable z where

z=e 2t [z1™1" + 296711 (3.50)

and

w1 = w2 — (g)g (3.51)

. 2 . .
Underdamped motion w? = w? — % >0: When w? > 0, then the square root is real so the transient

solution can be written taking the real part of z which gives
Fy r,

z(t)r = Ee‘

cos (w1t) (3.52)

The solution has the following characteristics:
a) The amplitude of the transient solution decreases exponentially with a time constant 7p = % while
the energy decreases with a time constant of %

b) There is a small downward frequency shift in that w; = y/w? — (%)2

Overdamped case w? = w2 — (%)2 < 0: In this case the square root is imaginary, which can be expressed
as wh = (%)2 — w2 which is real and the solution is just an exponentially damped one
F / /
o(t)r = L5t [ewlf + e*wlt] (3.53)
m

There is no oscillatory motion for the overdamped case, it slowly moves monotonically to zero. The total
energy decays away with two time constants greater than %

Critically damped w? = w? — (g)2 =0: For this case, as mentioned for the damped free oscillator, the
solution is of the form

z(t)r = (A+ Bt)e~ 2t (3.54)

The critically-damped system has the shortest time constant.
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3.6.2 Steady state response of a driven oscillator

The particular solution of the differential equation gives the important steady state response, z(t)s to the
forcing function. Consider that the forcing term is a single frequency sinusoidal oscillation.

F(t) = Fycos(wt) (3.55)

Thus the particular solution is the real part of the complex variable z which is a solution of

.
54 T4 +wlz = et (3.56)
m
A trial solution is 4
z = zge™t (3.57)
This leads to the relation 7
—w?2p +iwlzy + wizg = EO (3.58)

Multiplying the numerator and denominator by the factor (w(z) — w2) —ilw gives

R b
20 = 3 7; +ir = 3 2”;
(Wi —w?) +ilw (W2 —w?)” + (Tw)

7 [(wh —w?) —ilw] (3.59)

The steady state solution z(t)g thus is given by the real part of z, that is

o=

z(t)g = [(w§ — w?) coswt + Tw sin wt] (3.60)

[ V)

(W2 — w?)” + (Tw)?

This can be expressed in terms of a phase ¢ defined as

Tw
As shown in figure 3.7, the hypotenuse of the triangle equals
V(@3 —w?)? + (Tw)®. Thus

2_ 2
cosd = 1 :] (3.62)
2
V(63— w2 + (Tw) T
and r
sind = d (3.63)
V@2 —w?)? £ (Tw)?
The phase § represents the phase difference between the
driving force and the resultant motion. For a fixed wg the
phase § = 0 when w = 0, and increases to 0 = 7§ when
w = wy. For w > wq the phase § — 7 as w — oo. Figure 3.7: Phase between driving force and
The steady state solution can be re-expressed in terms of resultant motion.
the phase shift § as
By
z(t)g = m [cos  cos wt + sin § sin wi]
V@ —w?)? + (M)’
5y
= m cos (wt — 9) (3.64)

V@2 —w?)? + (Tw)?
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Figure 3.8: Amplitude versus time, and state space plots of the transient solution (dashed) and total solution
(solid) for two cases. The upper row shows the case where the driving frequency w = “- while the lower row
shows the same for the case where the driving frequency w = 5w .

3.6.3 Complete solution of the driven oscillator

To summarize, the total solution of the sinusoidally forced linearly-damped harmonic oscillator is the sum
of the transient and steady-state solutions of the equations of motion.

() Total = x(t)r + x(t) s (3.65)

For the underdamped case, the transient solution is the complementary solution

F
x(t)r = —e = cos (wit — ) (3.66)
where wy = /w2 — (%)2 The steady-state solution is given by the particular solution
Iy
x(t)s = m cos (wt — 9) (3.67)

V@2 —w?)? + (Tw)?

Note that the frequency of the transient solution is w; which in general differs from the driving frequency
w. The phase shift 5 — ¢ for the transient component is set by the initial conditions. The transient response
leads to a more complicated motion immediately after the driving function is switched on. Figure 3.8
illustrates the amplitude time dependence and state space diagram for the transient component, and the
total response, when the driving frequency is either w = % or w = 5w;. Note that the modulation of the
steady-state response by the transient response is unimportant once the transient response has damped out
leading to a constant elliptical state space trajectory. For cases where the initial conditions are x = & = 0
then the transient solution has a relative phase difference § —§ = « radians at ¢ = 0 and relative amplitudes
such that the transient and steady-state solutions cancel at ¢t = 0.

The characteristic sounds of different types of musical instruments depend very much on the admixture
of transient solutions plus the number and mixture of oscillatory active modes. Percussive instruments, such
as the piano, have a large transient component. The mixture of transient and steady-state solutions for
forced oscillations occurs frequently in studies of RLC networks in electrical circuit analysis.
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3.6.4 Resonance

The discussion so far has discussed the role of the transient and steady-state solutions of the driven damped
harmonic oscillator which occurs frequently is science, and engineering. Another important aspect is reso-
nance that occurs when the driving frequency w approaches the natural frequency w; of the damped system.
Consider the case where the time is sufficient for the transient solution to have decayed to zero.

Figure 3.9 shows the amplitude and phase for the steady-
state response as w goes through a resonance as the driving
frequency is changed. The steady-states solution of the
driven oscillator follows the driving force when w << wq in
that the phase difference is zero and the amplitude is just
ﬂkl. The response of the system peaks at resonance, while
for w >> wg the harmonic system is unable to follow the
more rapidly oscillating driving force and thus the phase of
the induced oscillation is out of phase with the driving force
and the amplitude of the oscillation tends to zero.

Note that the resonance frequency for a driven damped
oscillator, differs from that for the undriven damped oscilla-
tor, and differs from that for the undamped oscillator. The
natural frequency for an undamped harmonic oscillator
is given by

k
wi = — (3.68)

The transient solution is the same as damped free os-
cillations of a damped oscillator and has a frequency of
the system w; given by

T 2
w?=w?— <§> (3.69)

That is, damping slightly reduces the frequency.

For the driven oscillator the maximum value of the
steady-state amplitude response is obtained by taking the
maximum of the function x(t)g, that is when %ﬁ = 0. This
occurs at the resonance angular frequency wg where

Figure 3.9: Resonance behavior for the
)2 linearly-damped, harmonically driven, linear
Wi — 2( ) (3.70)

= oscillator.

No resonance occurs if w3 —2 (g) < 0 since then wg is imaginary and the amplitude decreases monotonically
with increasing w. Note that the above three frequencies are identical if I' = 0 but they differ when I > 0
and wp < wy < wp.

For the driven oscillator it is customary to define the quality factor @ as
WR
E — 3~71
Q=" (3.71)

When @ >> 1 the system has a narrow high resonance peak. As the damping increases the quality factor
decreases leading to a wider and lower peak. The resonance disappears when @ <1 .

3.6.5 Energy absorption

Discussion of energy stored in resonant systems is best described using the steady state solution which is
dominant after the transient solution has decayed to zero. Then

[(wg — wz) coswt + Tw sin wt| (3.72)

8
—

~
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(@F —w?)’ + (Tw)*
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This can be rewritten as

x(t)s = Ae coswt + Agps sinwt (3.73)
where the elastic amplitude -
20
Ay = e w;)g e (w§ — w?) (3.74)
while the absorptive amplitude
o
Aabs = n; Tw (375)

(@§ — w?)” + (Tw)*

Figure 3.10 shows the behavior of the absorptive and
elastic amplitudes as a function of angular frequency w.
The absorptive amplitude is significant only near res- A,
onance whereas the elastic amplitude goes to zero at Fon £
resonance. Note that the full width at half mazximum of i
the absorptive amplitude peak equals T'. I

The work done by the force Fy cos wt on the oscillator
is

W= / Fdz = / Fidt (3.76)

Thus the absorbed power P(t) is given by

P(t) = % =Fz (3.77)

The steady state response gives a velocity

#(t)s = —wAasinwt + wAa, coswt (3.78) Figure 3.10: Elastic (solid) and absorptive

(dashed) amplitudes of the steady-state solution
for I' = 0.10wy.
P(t) = Fycoswt [—wAg sinwt + wAgps coswt]  (3.79)

Thus the steady-state instantaneous power input is

The absorptive term steadily absorbs energy while the elastic term oscillates as energy is alternately absorbed
or emitted. The time average over one cycle is given by

(P) = Fy [—wAel (coswtsinwt) + wAgps <(cos wt)2>} (3.80)

where (cos wt sinwt) and <cos wt2> are the time average over one cycle. The time averages over one complete
cycle for the first term in the bracket is

—wAg (coswtsinwt) =0 (3.81)
while for the second term
1 flotT 1
(coswt®) = T /to coswt?dt = B (3.82)
Thus the time average power input is determined by only the absorptive term
1 F? Tw?
(P) = 5 FowAqps = . > (3.83)
2 2m (wg — w?)® + (Tw)

This shape of the power curve is a classic Lorentzian shape. Note that the maximum of the average kinetic
energy occurs at wg g = wo which is different from the peak of the amplitude which occurs at w? = wg— (g)Q
The potential energy is proportional to the amplitude squared, i.e. 2% which occurs at the same angular
frequency as the amplitude, that is, w3, = w% = w3 — 2 (%)2 The kinetic and potential energies resonate
at different angular frequencies as a result of the fact that the driven damped oscillator is not conservative
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because energy is continually exchanged between the oscillator and the driving force system in addition to
the energy dissipation due to the damping.
When w ~ wy >> T, then the power equation simplifies since

(w§ — w?) = (wo + w) (wo — w) & 2wp (wo — w) (3.84)

Therefore
N F? r

~ %(WO _w)Q + (g)Q

(P)

(3.85)

This is called the Lorentzian or Breit-Wigner shape. The half power points are at a frequency difference

from resonance of £Aw where
r
Aw = |wg —w| = :I:E (3.86)
Thus the full width at half mazimum of the Lorentzian curve equals I'. Note that the Lorentzian has a
narrower peak but much wider tail relative to a Gaussian shape. At the peak of the absorbed power, the

absorptive amplitude can be written as

@

Aabs(w = WO) = m w2
0

(3.87)

That is, the peak amplitude increases with increase in ). This explains the classic comedy scene where the
soprano shatters the crystal glass because the highest quality crystal glass has a high @ which leads to a
large amplitude oscillation when she sings on resonance.

The mean lifetime 7 of the free linearly-damped harmonic oscillator, that is, the time for the energy of
free oscillations to decay to 1/e, was shown to be related to the damping coefficient " by

1
== 3.88
r=1 (359)
Therefore we have the classical uncertainty principle for the linearly-damped harmonic oscillator
that the measured full-width at half maximum of the energy resonance curve for forced oscillation and the
mean life for decay of the energy of a free linearly-damped oscillator are related by

=1 (3.89)

This relation is correct only for a linearly-damped harmonic system. Comparable relations between the
lifetime and damping width exist for different forms of damping.

One can demonstrate the above line width and decay time relationship using an acoustically driven
electric guitar string. Similarily, the width of the electromagnetic radiation is related to the lifetime for
decay of atomic or nuclear electromagnetic decay. This classical uncertainty principle is exactly the same
as the one encountered in quantum physics due to wave-particle duality. In nuclear physics it is difficult to
measure the lifetime of states when 7 < 10713s. For shorter lifetimes the value of ' can be determined from
the shape of the resonance curve which can be measured directly when the damping is large.

3.1 Example: Harmonically-driven series RLC circuit

The harmonically-driven, resonant, series RLC' circuit, is encountered fre-
quently in AC circuits. Kirchhoff’s Rules applied to the series RLC circuit

lead to the differential equation o _y
q —(
Li+ R+ & = Vosinwt ~
{
where q is charge, L is the inductance, C is the capacitance, R is the resistance, L R &

and the applied voltage across the circuit is V(w) = Vysinwt. The linearity of
the network allows use of the phasor approach which assumes that the current
I = Iye™t, the voltage V = Voe! @9 and the impedance is a complex number
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Z = ‘I/—(‘]’ei‘; where § is the phase difference between the voltage and the current. For this circuit the impedance
is given by

wC

Because of the phases involved in this RLC circuit, at resonance the mazimum voltage across the resistor
occurs at a frequency of wr = wq, across the capacitor the maximum voltage occurs at a frequency wzc =

2_ R? - - 2 _ _wd 2_ 1
Wiy — 377, and across the inductor L the maximum voltage occurs at a frequency wi = — where wi = 15

Z:R—H'(wL—i)

RZ

2L
is the resonance angular frequency when R = 0. Thus these resonance frequencies differ when R > 0.

3.7 Wave equation

Wave motion is a ubiquitous feature in nature. Mechanical wave motion is manifest by transverse waves
on fluid surfaces, longitudinal and transverse seismic waves travelling through the Earth, and vibrations of
mechanical structures such as suspended cables. Acoustical wave motion occurs on the stretched strings of
the violin, as well as the cavities of wind instruments. Wave motion occurs for deformable bodies where
elastic forces acting between the nearest-neighbor atoms of the body exert time-dependent forces on one
another. Electromagnetic wave motion includes wavelengths ranging from 10°m radiowaves, to 10~ 13m ~-
rays. Matter waves are a prominent feature of quantum physics. All these manifestations of waves exhibit
the same general features of wave motion. Chapter 14 will introduce the collective modes of motion, called
the normal modes, of coupled, many-body, linear oscillators which act as independent modes of motion.
The basic elements of wavemotion are introduced at this juncture because the equations of wave motion are
simple, and wave motion features prominently in several chapters throughout this book.

Consider a travelling wave in one dimension for a linear system. If the wave is moving, then the wave
function ¥ (z,t) describing the shape of the wave, is a function of both z and ¢. The instantaneous amplitude
of the wave ¥ (z,t) could correspond to the transverse displacement of a wave on a string, the longitudinal
amplitude of a wave on a spring, the pressure of a longitudinal sound wave, the transverse electric or magnetic
fields in an electromagnetic wave, a matter wave, etc. If the wave train maintains its shape as it moves, then
one can describe the wave train by the function f(¢) where the coordinate ¢ is measured relative to the
shape of the wave, that is, it could correspond to the phase of a crest of the wave. Consider that f(¢ = 0),
corresponds to a constant phase, e.g. the peak of the travelling pulse, then assuming that the wave travels
at a phase velocity v in the = direction and the peak is at z = 0 for ¢ = 0, then it is at x = vt at time .
That is, a point with phase ¢ fixed with respect to the waveform shape of the wave profile f(¢) moves in
the 4+ direction for ¢ = x — vt and in —z direction for ¢ = x + vt.

General wave motion can be described by solutions of a wave equation. The wave equation can be
written in terms of the spatial and temporal derivatives of the wave function ¥(zt). Consider the first partial
derivatives of ¥(zt) = f(x Fot) = f().

U AV dp AV

and U AU d¢ 4
ov _d¥oe _ d¥ 3.91
ot dp ot | dg (3.91)
Factoring out % for the first derivatives gives
ov ov
T (392

The sign in this equation depends on the sign of the wave velocity making it not a generally useful formula.
Consider the second derivatives 2U 2T 2y
_ &2 _d¥ (3.93)

0z d¢* 0x  d¢

and
82_\11 B dQ\P@ B o d*U
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Factoring out Cfi%’ gives
2 2

Fu_ 10w 5.5

ox?  v? o2
This wave equation in one dimension for a linear system is independent of the sign of the velocity. There
are an infinite number of possible shapes of waves both travelling and standing in one dimension, all of these
must satisfy this one-dimensional wave equation. The converse is that any function that satisfies this one
dimensional wave equation must be a wave in this one dimension.

The Wave Equation in three dimensions is

0% N 0% N 0?1 9%
0x2 oy 022 w2 Of2

There are an unlimited number of possible solutions ¥ to this wave equation, any one of which corresponds
to a wave motion with velocity v.

The Wave Equation is applicable to all manifestations of wave motion, both transverse and longitudinal,
for linear systems. That is, it applies to waves on a string, water waves, seismic waves, sound waves,
electromagnetic waves, matter waves, etc. If it can be shown that a wave equation can be derived for any
system, discrete or continuous, then this is equivalent to proving the existence of waves of any waveform,
frequency, or wavelength travelling with the phase velocity given by the wave equation.[Cra65]

V20 =

(3.96)

3.8 Travelling and standing wave solutions of the wave equation

The wave equation can exhibit both travelling and standing-wave solutions. Consider a one-dimensional

travelling wave with velocity v having a specific wavenumber k = QT” Then the travelling wave is best
written in terms of the phase of the wave as
U(z,t) = A(k)e' X @ = A(k)el FoFe (3.97)
— 27

where the wave number k£ = =, with A being the wave length, and angular frequency w = kv. This particular
solution satisfies the wave equation and corresponds to a travelling wave with phase velocity v = %f’: in the
positive or negative direction = depending on whether the sign is negative or positive. Assuming that the
superposition principle applies, then the superposition of these two particular solutions of the wave equation

can be written as
U(z,t) = A(k)(eFo=wt) 4 gilhetwt)y — A(k)eh® (o7t 4 e@t) = 2A(K)e' ™ coswt (3.98)

Thus the superposition of two identical single wavelength travelling waves propagating in opposite directions
can correspond to a standing wave solution. Note that a standing wave is identical to a stationary normal
mode of the system discussed in chapter 14. This transformation between standing and travelling waves can
be reversed, that is, the superposition of two standing waves, i.e. normal modes, can lead to a travelling
wave solution of the wave equation.

Discussion of waveforms is simplified when using either of the following two limits.

1) The time dependence of the waveform at a given location z = xzy which can be expressed using a
Fourier decomposition, appendix 1.2, of the time dependence as a function of angular frequency w = nwy.

o0 oo
U(zg,t) = | ApemForomwod) — N B (zq) e "0t (3.99)
n=—oo n=—oo
2) The spatial dependence of the waveform at a given instant ¢ = ¢y, which can be expressed using a
Fourier decomposition of the spatial dependence as a function of wavenumber k& = nkq

oo (oo}
U(w,tg) = . ApemFor=ert) = N™ 0, (g) ehor (3.100)

n—=——oo n—=—oo

The above is applicable both to discrete, or continuous linear oscillator systems, e.g. waves on a string.

In summary, stationary normal modes of a system are obtained by a superposition of travelling waves
travelling in opposite directions, or equivalently, travelling waves can result from a superposition of stationary
normal modes.
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3.9 Waveform analysis

3.9.1 Harmonic decomposition

As described in appendix I, when superposition applies, then a
Fourier series decomposition of the form 3.101 can be made of
any periodic function where

N
t) = Z ay, cos(nwot + ¢,,)

n=1

(3.101)

A more general Fourier Transform can be made for an aperiodic
function where
Plt) = / o () cos(wt + & (w))dt (3.102)
Any linear system that is subject to the forcing function F'(t),
has an output that can be expressed as a linear superposition
of the solutions of the individual harmonic components of the
forcing function. Fourier analysis of periodic waveforms in terms
of harmonic trigonometric functions plays a key role in describing
oscillatory motion in classical mechanics and signal processing
for linear systems. Fourier’s theorem states that any arbitrary
forcing function F'(t) can be decomposed into a sum of harmonic
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Figure 3.11: The time and frequency rep-
resentations of a system exhibiting beats.

terms. As a consequence two equivalent representations can be used to describe signals and waves; the first
is in the time domain which describes the time dependence of the signal. The second is in the frequency
domain which describes the frequency decomposition of the signal. Fourier analysis relates these equivalent

representations.
For example, the superposition of two equal intensity har-
monic oscillators in the time domain is given by

y(t) = Acos(wit) + Acos(wat)

= 2Acos [(%) t} cos K%) t](3.103)

which leads to the phenomenon of beats as illustrated for both
the time domain and frequency domain in figure 3.11.

3.9.2 The free linearly-damped linear oscilla-
tor

The response of the free, linearly-damped, linear oscillator is one
of the most frequently encountered waveforms in science and thus
it is useful to investigate the Fourier transform of this waveform.
The waveform amplitude for the underdamped case, shown in
figure 3.5, is given by equation (3.35), that is

f@) = Ae_%tcos(wlt—é)
f&) =0

t>0
t<O0

(3.104)
(3.105)

2 .
where w} = wd — (§)” and where wy is the angular frequency of

the undamped system. The Fourier transform is given by

20 w? —w?) —iTw
oo ) —ilw]

G(w) = (3.106)

which is complex and has the famous Lorentz form.

Figure 3.12:
Fourier transform |G(w)|?
linearly-underdamped harmonic oscillator
with wg = 10 and damping " = 1.

w

The intensity f(#)? and
of the free
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The intensity of the wave gives

IF @) = A%e Tt cos? (wit — 6) (3.107)
2
wo

(@2 — W) + (Tw)?

|G (w)|” (3.108)

Note that since the average over 2w of cos® = %, then the average over the cos? (w1t — &) term gives the
intensity I (t) = %26_Ft which has a mean lifetime for the decay of 7 = &. The |G (w)|? distribution has the
classic Lorentzian shape, shown in figure 3.12, which has a full width at half-maximum, FWHM, equal to I'.
Note that G (w) is complex and thus one also can determine the phase shift § which is given by the ratio of

the imaginary to real parts of equation 3.105, i.e. tand = ﬁ
%1

The mean lifetime of the exponential decay of the intensity can be determined either by measuring 7
from the time dependence, or measuring the FWHM I' = % of the Fourier transform |G (w)[>. In nuclear
and atomic physics excited levels decay by photon emission with the wave form of the free linearly-damped,
linear oscillator. Typically the mean lifetime 7 usually can be measured when 7 > 10725 whereas for

shorter lifetimes the radiation width I becomes sufficiently large to be measured. Thus the two experimental
approaches are complementary.

3.9.3 Damped linear oscillator subject to an arbitrary periodic force

Fourier’s theorem states that any arbitrary forcing function F'(¢) can be decomposed into a sum of harmonic
terms. Consider the response of a damped linear oscillator to an arbitrary periodic force.

N
F(t) =Y anFy (wn) cos (wnt + ) (3.109)

n=0

For each harmonic term w, the response of a linearly-damped linear oscillator to the forcing function
F(t) = Fy (w) cos(wpt) is given by equation (3.65 — 67) to be

() rotar = x(t)r +2x(t)s
= P | 5o (it — 5 + ! cos (wnt — 6,) | (3.110)
m V@2 —w2)? + (Dw,)?

The amplitude is obtained by substituting into (3.110) the derived values % from the Fourier analysis.

3.2 Example: Vibration isolation

Frequently it is desired to isolate instrumentation from the
influence of horizontal and vertical external vibrations that exist
in the environment. One arrangement to achieve this isolation

is to mount a heavy base of mass m on weak springs of spring
constant k plus weak damping. The response of this system is

2 . . e soft spring —s—<—"
lar frequency w% =wi-2 (g) associated with each resonant ;Sm;;mg

frequency wo of the system. For each resonant frequency the sys- = f:;

gwen by equation 3.109 which exhibits a resonance at the angu-  damper

tem amplifies the vibrational amplitude for angular frequencies o

close to resonance that is, below /2 wo, while it attenuates the Seismic isolation of an optical bench.
vibration roughly by a factor of (%1)2 at higher frequencies. To

avoid the amplification near the resonance it is necessary to make wqy very much smaller than the frequency
range of the vibrational spectrum and have a moderately high @Q value. This is achieved by use a very heavy
base and weak spring constant so that wq is very small. A typical table may have the resonance frequency
at 0.5Hz which is well below typical perturbing vibrational frequencies, and thus the table attenuates the
vibration by 99% at 5Hz and even more attenuation for higher frequency perturbations. This principle is
used extensively in design of vibration-isolation tables for optics or microbalance equipment.
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3.10 Signal processing

It has been shown that the response of the linearly-damped linear oscillator, subject to any arbitrary periodic
force, can be calculated using a frequency decomposition, (Fourier analysis), of the force, appendix I. The
response also can be calculated using a time-ordered discrete-time sampling of the pulse shape; that is, the
Green’s function approach, appendix I. The linearly-damped, linear oscillator is the simplest example of
a linear system that exhibits both resonance and frequency-dependent response. Typically physical linear
systems exhibit far more complicated response functions having multiple resonances. For example, an au-
tomobile suspension system involves four wheels and associated springs plus dampers allowing the car to
rock sideways, or forward and backward, in addition to the up-down motion, when subject to the forces
produced by a rough road. Similarly a suspension bridge or aircraft wing can twist as well as bend due to
air turbulence, or a building can undergo complicated oscillations due to seismic waves. An acoustic system
exhibits similar complexity. Signal analysis and signal processing is of pivotal importance to elucidating the
response of complicated linear systems to complicated periodic forcing functions. Signal processing is used
extensively in engineering, acoustics, and science.

The response of a low-pass filter, such as an R-C circuit or a coaxial cable, to a input square wave,
shown in figure 3.13, provides a simple example of the relative advantages of using the complementary
Fourier analysis in the frequency domain, or the Green’s discrete-function analysis in the time domain. The
response of a repetitive square-wave input signal is shown in the time domain plus the Fourier transform to
the frequency domain. The middle curves show the time dependence for the response of the low-pass filter
to an impulse I (t) and the corresponding Fourier transform H(w). The output of the low-pass filter can
be calculated by folding the input square wave and impulse time dependence in the time domain as shown
on the left or by folding of their Fourier transforms shown on the right. Working in the frequency domain
the response of linear mechanical systems, such as an automobile suspension or a musical instrument, as
well as linear electronic signal processing systems such as amplifiers, loudspeakers and microphones, can
be treated as black boxes having a certain transfer function H(w, ¢) describing the gain and phase shift
versus frequency. That is, the output wave frequency decomposition is

G(W)output = H(w, @) - G(w)input (3.111)

Working in the time domain, the the low-pass system has an impulse response I(t) = e*%, which is the
Fourier transform of the transfer function H(w, ¢). In the time domain

Y()output = /oo x(r) - I(t —7)dr (3.112)

—00

This is shown schematically in figure 3.13. The Fourier transformation connects the three quantities in the
time domain with the corresponding three in the frequency domain. For example, the impulse response of
the low-pass filter has a fall time of 7 which is related by a Fourier transform to the width of the transfer
function. Thus the time and frequency domain approaches are closely related and give the same result for
the output signal for the low-pass filter to the applied square-wave input signal. The result is that the
higher-frequency components are attenuated leading to slow rise and fall times in the time domain.

Analog signal processing and Fourier analysis were the primary tools to analyze and process all forms of
periodic motion during the 20" century. For example, musical instruments, mechanical systems, electronic
circuits, all employed resonant systems to enhance the desired frequencies and suppress the undesirable
frequencies and the signals could be observed using analog oscilloscopes. The remarkable development of
computing has enabled use of digital signal processing leading to a revolution in signal processing that has
had a profound impact on both science and engineering. The digital oscilloscope, which can sample at fre-
quencies above 10°Hz, has replaced the analog oscilloscope because it allows sophisticated analysis of each
individual signal that was not possible using analog signal processing. For example, the analog approach in
nuclear physics used tiny analog electric signals, produced by many individual radiation detectors, that were
transmitted hundreds of meters via carefully shielded and expensive coaxial cables to the data room where
the signals were amplified and signal processed using analog filters to maximize the signal to noise in order to
separate the signal from the background noise. Stray electromagnetic radiation picked up via the cables sig-
nificantly degraded the signals. The performance and limitations of the analog electronics severely restricted
the pulse processing capabilities. Digital signal processing has rapidly replaced analog signal processing.
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Figure 3.13: Response of an RC' electrical circuit to an input square wave. The upper row shows the time
and the exponential-form frequency representations of the square-wave input signal. The middle row gives
the impulse response, and corresponding transfer function for the RC' circuit. The bottom row shows the
corresponding output properties in both the time and frequency domains

Analog to digital detector circuits are built directly into the electronics for each individual detector so that
only digital information needs to be transmitted from each detector to the analysis computers. Computer
processing provides unlimited and flexible processing capabilities for the digital signals greatly enhancing
the response and sensitivity of our detector systems. Digital CD and DVD disks are common application of
digital signal processing.

3.11 Wave propagation

Wave motion typically involves a packet of waves encompassing a finite number of wave cycles. Information
in a wave only can be transmitted by starting, stopping, or modulating the amplitude of a wave train, which
is equivalent to forming a wave packet. For example, a musician will play a note for a finite time, and this
wave train propagates out as a wave packet of finite length. You have no information as to the frequency
and amplitude of the sound prior to the wave packet reaching you, or after the wave packet has passed you.
The velocity of the wavelets contained within the wave packet is called the phase velocity. For a dispersive
system the phase velocity of the wavelets contained within the wave packet is frequency dependent and the
shape of the wave packet travels at the group velocity which usually differs from the phase velocity. If
the shape of the wave packet is time dependent, then neither the phase velocity, which is the velocity of the
wavelets, nor the group velocity, which is the velocity of an instantaneous point fixed to the shape of the
wave packet envelope, represent the actual velocity of the overall wavepacket.

A third wavepacket velocity, the signal velocity, is defined to be the velocity of the leading edge of the
energy distribution, and corresponding information content, of the wave packet. For most linear systems
the shape of the wave packet is not time dependent and then the group and signal velocities are identical.
However, the group and signal velocities can be very different for non-linear systems as discussed in chapter
4.7. Note that even when the phase velocity of the waves within the wave packet travels faster than the group
velocity of the shape, or the signal velocity of the energy content of the envelope of the wave packet, the
information contained in a wave packet is only manifest when the wave packet envelope reaches the detector
and this energy and information travel at the signal velocity. The modern ideas of wave propagation,
including Hamilton’s concept of group velocity, were developed by Lord Rayleigh when applied to the theory
of sound[Ray1887]. The concept of phase, group, and signal velocities played a major role in discussion of
electromagnetic waves as well as de Broglie’s development of wave-particle duality in quantum mechanics.
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3.11.1 Phase, group, and signal velocities of wave packets

The concepts of wave packets, as well as their phase, group, and signal velocities, are of considerable impor-
tance for propagation of information and other manifestations of wave motion in science and engineering.
This importance warrants further discussion at this juncture.

Consider a particular k,w, component of a one-dimensional wave,

q(z,t) = Bellkztwt) (3.113)
The argument of the exponential is called the phase ¢ of the wave where
=k —wt (3.114)

If we move along the z axis at a velocity such that the phase is constant then we perceive a stationary
pattern in this moving frame. The velocity of this wave is called the phase velocity. To ensure constant
phase requires that ¢ is constant, or assuming real k and w

wdt = kdz (3.115)
Therefore the phase velocity is defined to be
Uphase = % (3.116)

The velocity discussed so far is just the phase velocity of the individual wavelets at the carrier frequency. If
k or w are complex then one must take the real parts to ensure that the velocity is real.

If the phase velocity of a wave is dependent on the wavelength, that is, vppese (k), then the system is
said to be dispersive in that the wave is dispersed according the wavelength. The simplest illustration of
dispersion is the refraction of light in glass prism which leads to dispersion of the light into the spectrum of
wavelengths. Dispersion leads to development of wave packets that travel at group and signal velocities that
usually differ from the phase velocity. To illustrate this behavior, consider two equal amplitude travelling
waves having slightly different wave number £ and angular frequency w. Superposition of these waves gives

q(ac,t) — A(ei[kx—wt] + ei[(k+Ak)x—(w+Aw)t]) (3-117)

Aei[(kJr%)zf(er%)t] . {efi[%zf%t] + ez[%

= oAl AR e o BF AWy
2 2

xf%t]}

This corresponds to a wave with the average carrier frequency modulated by the cosine term which has a
wavenumber of % and angular frequency %, that is, this is the usual example of beats. The cosine term
modulates the average wave producing wave packets as shown in figure 3.11. The velocity of these wave
packets is called the group velocity given by requiring that the phase of the modulating term is constant,
that is

—dx = —dt (3.118)
Thus the group velocity is given by
dr Aw
Yorow = G = Bk
If dispersion is present then the group velocity vgroup = % does not equal the phase velocity vphase = F-
Expanding the above example to superposition of n waves gives

(3.119)

qla,t) = ApeilbrrEert (3.120)

r=1

In the event that n — oo and the frequencies are continuously distributed, then the summation is replaced
by an integral

oz t) = / Ak)ei ke g (3.121)

— 00
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where the factor A (k) represents the distribution amplitudes of the component waves, that is the spectral
decomposition of the wave. This is the usual Fourier decomposition of the spatial distribution of the wave.

Consider an extension of the linear superposition of two waves to a well defined wave packet where the
amplitude is nonzero only for a small range of wavenumbers kg £ Ak.

ko+Ak ]
q(w,t)z/k N A(k)el ko=t df; (3.122)
.-

This functional shape is called a wave packet which only has meaning if Ak << kg. The angular frequency
can be expressed by making a Taylor expansion around kg

d
wik) = wlko) + [ S=)  (k— ko) + ... (3.123)
dk ) 1.,
For a linear system the phase then reduces to
dw
kx — wt = (kox — wot) + (k — ko)z — <%) (k— ko)t (3.124)
ko

The summation of terms in the exponent given by 3.124 leads to the amplitude 3.122 having the form of a
product where the integral becomes

q(.’]:,t) — ei(ko:{)—wot)/

ko—Ak

ko+Ak il o (e
Akye * R0 le=(88),, 8 g, (3.125)

The integral term modulates the e?(k0#=«ot) firgt term.
The group velocity is defined to be that for which the phase of the exponential term in the integral is
constant. Thus

dw
roup — | 37 3.126
Foroup < dk ) ko ( )
Since w = kvppase then
8 ase
Vgroup = Vphase + k Ug’;g (3.127)

For non-dispersive systems the phase velocity is independent of the wave number k or angular frequency w
and thus vgroup = Uphase- The case discussed earlier, equation (3.103), for beating of two waves gives the
same relation in the limit that Aw and Ak are infinitessimal.

The group velocity of a wave packet is of physical significance for dispersive media where vgroup =
(?l_:)ko # ¢ = Uphase- Every wave train has a finite extent and thus we usually observe the motion of a
group of waves rather than the wavelets moving within the wave packet. In general, for non-linear dispersive
systems the derivative % can be either positive or negative and thus in principle the group velocity
can either be greater than, or less than, the phase velocity. Moreover, if the group velocity is frequency
dependent, that is, when group velocity dispersion occurs, then the overall shape of the wave packet is time
dependent and thus the speed of a specific relative location defined by the shape of the envelope of the wave
packet does not represent the signal velocity of the wave packet. Brillouin showed that the distribution
of the energy, and corresponding information content, for any wave packet, travels at the signal velocity
which can be different from the group velocity if the shape of the envelope of the wave packet is time
dependent. For electromagnetic waves one has the possibility that the group velocity vgroup > Uphase = ¢. In
1914 Brillouin[Bril4][Bri60] showed that the signal velocity of electromagnetic waves, defined by the leading
edge of the time-dependent envelope of the wave packet, never exceeds ¢ even though the group velocity
corresponding to the velocity of the instantaneous shape of the wave packet may exceed c¢. Thus, there is
no violation of Einstein’s fundamental principle of relativity that the velocity of an electromagnetic wave
cannot exceed c.
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3.3 Example: Water waves breaking on a beach

The concepts of phase and group velocity are illustrated by the example of water waves moving at velocity
v incident upon a straight beach at an angle a to the shoreline. Consider that the wavepacket comprises
many wavelengths of wavelength \. During the time it takes the wave to travel a distance A, the point where
the crest of one wave breaks on the beach travels a distance ﬁ along beach. Thus the phase velocity of the
crest of the one wavelet in the wave packet is

(%

Uphase =
COS ¢

The velocity of the wave packet along the beach equals

Vgroup = U COS &

Note that for the wave moving parallel to the beach o = 0 and Vphase = Vgroup = v. However, for o = 5

2
Uphase — 00 and Vgroup — 0. In general for waves breaking on the beach

UphaseVgroup = 02
The same behavior is exhibited by surface waves bouncing off the sides of the Erie canal, sound waves in
a trombone, and electromagnetic waves transmitted down a rectangular wave guide. In the latter case the
phase velocity exceeds the velocity of light ¢ in apparent violation of Finstein’s theory of relativity. However,
the information travels at the signal velocity which is less than c.

3.4 Example: Surface waves for deep water

In the “Theory of Sound”[Ray1887] Rayleigh discusses the example of surface waves for water. He derives
a dispersion relation for the phase velocity vphase and wavenumber k which are related to the density p, depth
I, gravity g, and surface tension T, by

Tk?
w? = gk + —— tanh(kl)
p

For deep water where the wavelength is short compared with the depth, that is kl >> 1, then tanh(kl) — 1
and the dispersion relation is given approximately by

Tk?
w? =gk + —
p

For long surface waves for deep water, that is, small k, then the gravitational first term in the dispersion
relation dominates and the group velocity is given by

_fdw\ 1 g 1w  Wppase
Vgroup = <dk> “oVE T 2% T 2

That is, the group velocity is half of the phase velocity. Here the wavelets are building at the back of the wave
packet, progress through the wave packet and dissipate at the front. This can be demonstrated by dropping a
pebble into a calm lake. It will be seen that the surface disturbance comprises a wave packet moving outwards
at the group velocity with the individual waves within the wave packet expanding at twice the group velocity
of the wavepacket, that is, they are created at the inner radius of the wave packet and disappear at the outer
radius of the wave packet.

For small wavelength ripples, where k is large, then the surface tension term dominates and the dispersion
relation is approximately given by
) TR

p

_ () _3
Ugroup = dk - QUphase

Here the group velocity exceeds the phase velocity and wavelets are building at the front of the wave packet and
dissipate at the back. Note that for this linear system, the Brillion signal velocity equals the group wvelocity
for both gravity and surface tension waves for deep water.

w

leading to a group velocity of



3.11. WAVE PROPAGATION 73

3.5 Example: Electromagnetic waves in ionosphere

The response to radio waves, incident upon a free electron plasma in the ionosphere, provides an excellent
example that involves cut-off frequency, complexr wavenumber k, as well as the phase, group, and signal
velocities. Maxwell’s equations give the most general wave equation for electromagnetic waves to be

O’E dj p
2 free free
E-—-ecyu— = pu———"—4+V- (_ )
v a ot? Y * €

2
V’H — Hegm = =V X jfree

where prre. and jpree are the unbound charge and current densities. The effect of the bound charges and
currents are absorbed into € and . Ohm’s Law can be written in terms of the electrical conductivity o which
s a constant

j=cE

Assuming Ohm’s Law plus assuming pg,.. = 0, in the plasma gives the relations

O’E OE
2 p— —_— —_— =
V?E —ep ETPRaT 0
0°H OH
2 — —_— —_— =
VH — e BT o B 0

The third term in both of these wave equations is a damping term that leads to a damped solution of an
electromagnetic wave in a good conductor.
The solution of these damped wave equations can be solved by considering an incident wave

E = E %e'(“!=k2)
Substituting for E in the first damped wave equation gives
—k% + wiep —iwop =0
That is

k? = w?ep [1 - E]
we

In general k is complex, that is, it has real kr and imaginary k; parts that lead to a solution of the form

E= Eoefkaei(wtfkgz)

The first exponential term is an exponential damping term while the second exponential term is the oscillating
term.

Consider that the plasma involves the motion of a bound damped electron, of charge q of mass m, bound
i a one dimensional atom or lattice subject to an oscillatory electric field of frequency w. Assume that the
electromagnetic wave is travelling in the Z direction with the transverse electric field in the & direction. The

equation of motion of an electron can be written as
% 4 Ik + wiz = KqEoe' @+

where T' is the damping factor. The instantaneous displacement of the oscillating charge equals

q 1 S i(wt—kz)
X=——F—"—F"—XF
m (W — w?) + ifw 0
and the velocity is .
%< = 2 w &Eoei(wtfk‘z)

m (Wi — w?) + ilw
Thus the instantaneous current density is given by
Ng? w -
j = Ngx = K Egetwt=k2)
! 1 m (w2 —w?) +ilw  °
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Therefore the electrical conductivity is given by
Ng? iw
m (Wi —w?)+ilw

g =

Let us consider only unbound charges in the plasma, that is let wg = 0. Then the conductivity is given by

N¢? w
0= ——
m ilw— w?

For a low density ionized plasma w >>T' thus the conductivity is given approximately by

Ng?
o ———
mw
Since o is pure imaginary, then j and E have a phase difference of 5 which implies that the average of
the Joule heating over a complete period is (j-E) = 0. Thus there is no energy loss due to Joule heating
implying that the electromagnetic energy is conserved.
Substitution of o into the relation for k?

) N¢?
R 1= 2 1 —
wen [ we Wk emw?

Define the Plasma oscillation frequency wp to be

Ng?

wp =4/ —
then k2 can be written as
w

k2 = wlep [1 - (”—Pﬂ (a)

For a low density plasma the dielectric constant kg ~ 1 and the relative permeability kg ~ 1 and thus

€ = Kgeo ~ €9 and p = Kply =~ o The velocity of light in vacuum c = \/s:(l)—uo Thus for low density

equation « can be written as
2 2, 212
w®=w, +ck 8)
Differentiation of equation [ with respect to k gives 20.)‘;—‘,: = 2c%k. That is, UphaseVgroup = c? and the phase
velocity s
2

Uphase = 2+ k_g
There are three cases to consider. )
1) w>wp: For this case |1 — (%’) ] > 1 and thus k is a pure real number. Therefore the elec-

tromagnetic wave is transmitted with a phase velocity that exceeds ¢ while the group welocity is less than
c.
2) w<wp: For this case {1 - (“Z—P)Q] <1 and thus k is a pure imaginary number. Therefore the

electromagnetic wave is not transmitted in the ionosphere and is attenuated rapidly as 67(%‘1)2. However,
since there are no Joule heating losses, then the electromagnetic wave must be complete reflected. Thus the
Plasma oscillation frequency serves as a cut-off frequency. For this example the signal and group velocities
are identical.

For the ionosphere N = 10~ electrons/m?, which corresponds to a Plasma oscillation frequency of
v=wp/2n =3MHz. Thus electromagnetic waves in the AM waveband (< 1.6 M Hz) are totally reflected by
the ionosphere and bounce repeatedly around the Farth, whereas for VHF frequencies above 3M H z, the waves
are transmitted and refracted passing through the atmosphere. Thus light is transmitted by the ionosphere.
By contrast, for a good conductor like silver, the Plasma oscillation frequency is around 10'Hz which is
in the far ultraviolet part of the spectrum. Thus, all lower frequencies, such as light, are totally reflected
by such a good conductor, whereas X-rays have frequencies above the Plasma oscillation frequency and are
transmitted.
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3.11.2 Fourier transform of wave packets

The relation between the time distribution and the cor-
responding frequency distribution, or equivalently, the
spatial distribution and the corresponding wave-number 10T Glw)
distribution, are of considerable importance in discus- 091
sion of wave packets and signal processing. It directly 08T

relates to the uncertainty principle that is a characteris- 0 /
tic of all forms of wave motion. The relation between the 06T
time and corresponding frequency distribution is given 05T
via the Fourier transform discussed in appendix I. The ™7
following are two examples of the Fourier transforms of ["i !
(O]

typical but rather different wavepacket shapes that are

. . . . ol T
encountered often in science and engineering.

0.0

3.6 Example: Fourier transform of a
Gaussian wave packet:

‘ . . I
Assuming that the amplitude of the wave is a || (
Gaussian wave packet shown in the adjacent figure where Y ﬂ \ |

This leads to the Fourier transform
o212
f(t) =cV2mo,e” "2 cos (wot) Fourier transform of a Gaussian frequency
distribution.
Note that the wavepacket has a standard deviation for the amplitude of the wavepacket of oy = 2= , that

is o -0, = 1. The Gaussian wavepacket results in the minimum product of the standard deviatz’ozg of the
frequency and time representations for a wavepacket. This has profound importance for all wave phenomena,
and especially to quantum mechanics. Because matter exhibits wave-like behavior, the above property of wave
packet leads to Heisenberg’s Uncertainty Principle. For signal processing, it shows that if you truncate a

wavepacket you will broaden the frequency distribution.

3.7 Example: Fourier transform of a rectangular wave packet:

Assume unity amplitude of the frequency distribution between wy — Aw < w < wo + Aw , that is, a single
isolated square pulse of width T that is described by the rectangular function II defined as

_J1 |w —wo| < Aw

H(w)—{ 0 |w — wo| > Aw

Then the Fourier transform us given by

sin Awt

0= [ 222 o

That is, the transform of a rectangular wavepacket gives a cosine wave modulated by an unnormalized
sinc function which is a nice example of a simple wave packet. That is, on the right hand side we have
a wavepacket At = :I:% wide. Note that the product of the two measures of the widths Aw - At = =+.

Example 1.2 considers a rectangular pulse of unity amplitude between —3 < t < % which resulted in a

i WT
sSin =5

Fourier transform G (w) = T( = ) That is, for a pulse of width At = +5 the frequency envelope has
2

the first zero at Aw = £Z. Note that this is the complementary system to the one considered here which has
Aw - At = + illustrating the symmetry of the Fourier transform and its inverse.
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3.11.3 Wave-packet Uncertainty Principle

The Uncertainty Principle states that wavemotion exhibits a minimum product of the uncertainty in the
simultaneously measured width in time of a wave packet, and the distribution width of the frequency de-
composition of this wave packet. This was illustrated by the Fourier transforms of wave packets discussed
above where it was shown the product of the widths is minimized for a Gaussian-shaped wave packet. The
Uncertainty Principle implies that to make a precise measurement of the frequency of a sinusoidal wave
requires that the wave packet be infinitely long. If the duration of the wave packet is reduced then the
frequency distribution broadens. The crucial aspect needed for this discussion, is that, for the amplitudes

of any wavepacket, the standard deviations o (t) = \/(t2) — (t)? characterizing the width of the spectral
distribution in the angular frequency domain, o 4(w), and the width for the conjugate variable in time o 4(t)
are related :

oa(t) - oalw) =1 (Relation between amplitude uncertainties.)

This product of the standard deviations equals unity only for the special case of Gaussian-shaped spectral
distributions, and it is greater than unity for all other shaped spectral distributions.

The intensity of the wave is the square of the amplitude leading to standard deviation widths for a
Gaussian distribution where o7(t)? = 20 4(t)?, that is, o7(t) = 24) Thus the standard deviations for the

NoR
spectral distribution and width of the intensity of the wavepacket are related by:
1
or(t) - or(w) > 3 (Uncertainty principle for frequency-time intensities)

This states that the uncertainties with which you can simultaneously measure the time and frequency
for the intensity of a given wavepacket are related. If you try to measure the frequency within a short time
interval o;(¢) then the uncertainty in the frequency measurement oj(w) > #(t) Accurate measurement
of the frequency requires measurement times that encompass many cycles of oscillation, that is, a long
wavepacket.

Exactly the same relations exist between the spectral distribution as a function of wavenumber k, and
the corresponding spatial dependence of a wave z which are conjugate representations. Thus the spectral
distribution plotted versus k, is directly related to the amplitude as a function of position z; the spectral
distribution versus k,, is related to the amplitude as a function of y; and the k. spectral distribution is related
to the spatial dependence on z. Following the same arguments discussed above, the standard deviation,
o1(k;) characterizing the width of the spectral intensity distribution of k., and the standard deviation
or(x), characterizing the spatial width of the wave packet intensity as a function of x, are related by the
Uncertainty Principle for position-wavenumber. Thus in summary the temporal and spatial uncertainty
principles of the intensity of wave motion is,

or(t) - or(w) >% (3.128)
i) oik) >3 o) oulk) >5  on) ik > 3

This applies to all forms of wave motion, be they, sound waves, water waves, electromagnetic waves, or
matter waves.

As discussed in chapter 18, the transition to quantum mechanics involves relating the matter-wave prop-
erties to the energy and momentum of the corresponding particle. That is, in the case of matter waves,
multiplying both sides of equation 3.129 by % and using the de Broglie relations gives that the particle en-
ergy is related to the angular frequency by E' = Aiw and the particle momentum is related to the wavenumber,
that is p = hK. These lead to the Heisenberg Uncertainty Principle:

or(t) - or(F) = (3.129)

h
or(z) - 01(pa) 2 5 or(2)-o1(p:) 2 3
This uncertainty principle applies equally to the wavefunction of the electron in the

hydrogen atom, proton in a nucleus, as well as to a wavepacket describing a particle wave moving along some

h

or(y)-or(py) >
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trajectory. This implies that, for a particle of given momentum, the wavefunction is spread out spatially.
Planck’s constant i = 1.05410734J - s = 6.582107'6eV - 5 is extremely small compared with energies and
times encountered in normal life, and thus the effects due to the Uncertainty Principle are not important for
macroscopic dimensions.

Confinement of a particle, of mass m, within +o(z) of a fixed location implies that there is a corresponding
uncertainty in the momentum

o(ps) > (3.130)

20(x)
Now the variance in momentum p is given by the difference in the average of the square <(p - p)2>, and the

square of the average of (p)°. That is

o(p)? = <(p : p)2> —(p)” (3.131)

Assuming a fixed average location implies that (p) = 0, then

<(p : p)2> =a(p)® > <20F(L7")>2 (3.132)

Since the kinetic energy is given by:

p2 h2

Kinetic energy — 2— > 8—(>2
m mo(r

(Zero-point energy)

This zero-point energy is the minimum kinetic energy that a particle of mass m can have if confined within a
distance +o(r). This zero-point energy is a consequence of wave-particle duality and the uncertainty between
the size and wavenumber for any wave packet. It is a quantal effect in that the classical limit has & — 0 for
which the zero-point energy — 0.

Inserting numbers for the zero-point energy gives that an electron confined to the radius of the atom,
that is o(z) = 107%m, has a zero-point kinetic energy of ~ 1eV. Confining this electron to 3 x 107*®m, the
size of a nucleus, gives a zero-point energy of 10%V (1GeV). Confining a proton to the size of the nucleus
gives a zero-point energy of 0.5MeV. These values are typical of the level spacing observed in atomic and
nuclear physics. If i was a large number, then a billiard ball confined to a billiard table would be a blur
as it oscillated with the minimum zero-point kinetic energy. The smaller the spatial region that the ball
was confined, the larger would be its zero-point energy and momentum causing it to rattle back and forth
between the boundaries of the confined region. Life would be dramatically different if & was a large number.

In summary, Heisenberg’s Uncertainty Principle is a well-known and crucially important aspect of quan-
tum physics. What is less well known, is that the Uncertainty Principle applies for all forms of wave motion,
that is, it is not restricted to matter waves. The following three examples illustrate application of the
Uncertainty Principle to acoustics, the nuclear Mossbauer effect, and quantum mechanics.

3.8 Example: Acoustic wave packet

A wviolinist plays the note middle C (261.625H z) with constant intensity for precisely 2 seconds. Using
the fact that the velocity of sound in air is 343.2m/s calculate the following:

1) The wavelength of the sound wave in air: A = 343.2/261.625 = 1.312m.

2) The length of the wavepacket in air: Wavepacket length = 343.2 x 2 = 686.4m

3) The fractional frequency width of the note: Since the wave packet has a square pulse shape of length
T = 2s, then the Fourier transform is a sinc function having the first zeros when sin % = 0, that is, Av = %
Therefore the fractional width is % = U—IT = 0.0019. Note that to achieve a purity of % =107 the violinist

would have to play the note for 1.06hours.

3.9 Example: Gravitational red shift

The Mdéssbauer effect in nuclear physics provides a wave packet that has an exceptionally small fractional
width in frequency. For example, the %" Fe nucleus emits a 14.4keV deexcitation-energy photon which corre-
sponds to w ~ 2 x 10%°rad/s with a decay time of T~ 10~7s. Thus the fractional width is % ~3x 10718,



78 CHAPTER 3. LINEAR OSCILLATORS

In 1959 Pound and Rebka used this to test Finstein’s general theory of relativity by measurement of the
gravitational red shift between the attic and basement of the 22.5m high physics building at Harvard. The
magnitude of the predicted relativistic red shift is A—EE = 2.5 x 10 !5 which is what was observed with a

fractional precision of about 1%.

3.10 Example: Quantum baseball

George Gamow, in his book "Mr. Tompkins in Wonderland”, describes the strange world that would exist
if h was a large number. As an example, consider you play baseball in a universe where h is a large number.
The pitcher throws a 150g ball 20m to the batter at a speed of 40m/s. For a strike to be thrown, the ball’s
position must be pitched within the 30cm radius of the strike zone, that is, it is required that Ax < 0.3m.
The uncertainty relation tells us that the transverse velocity of the ball cannot be less than Av = QJAJ;. The
time of flight of the ball from the mound to batter is t = 0.5s. Because of the transverse velocity uncertainty,
Av, the ball will deviate tAv transversely from the strike zone. This also must not exceed the size of the

strike zone, that is;

tAv =

<0.3m (Due to transverse velocity uncertainty)
2mAx

Combining both of these requirements gives

2mAz?

h< =541072J .

This is 32 orders of magnitude larger than h so quantal effects are negligible. However, if h exceeded the
above value, then the pitcher would have difficulty throwing a reliable strike.

3.12 Summary

Linear systems have the feature that the solutions obey the Principle of Superposition, that is, the am-
plitudes add linearly for the superposition of different oscillatory modes. Applicability of the Principle of
Superposition to a system provides a tremendous advantage for handling and solving the equations of motion
of oscillatory systems.

Geometric representations of the motion of dynamical systems provide sensitive probes of periodic mo-
tion. Configuration space (q,q,t), state space (q,q,t) and phase space (q,p,t), are powerful geometric
representations that are used extensively for recognizing periodic motion where q,q, and p are vectors in
n-dimensional space.

Linearly-damped free linear oscillator The free linearly-damped linear oscillator is characterized by
the equation
i+T3+wiz=0 (3.26)

The solutions of the linearly-damped free linear oscillator are of the form

2
2= (3) [zleiwlt + zge_wlt} w1 = w2 — <—) (3.33)

The solutions of the linearly-damped free linear oscillator have the following characteristic frequencies cor-
responding to the three levels of linear damping

z(t) = Ae—(5)t cos (wit — B) | underdamped wy = \/Wg - 5)2 >0

x(t) = [Aje +t + Age -] | overdamped w4 = —% + (g

z(t) = (A + Bt) e (5)t critically damped w1 = \/WQ — (5)2 =0
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The energy dissipation for the linearly-damped free linear oscillator time averaged over one period is
given by

(E) = Ege™ (3.44)
The quality factor ) characterizing the damping of the free oscillator is defined to be
FE w1
-2 _* 3.47
Q=25 =T (3.47)

where AF is the energy dissipated per radian.

Sinusoidally-driven, linearly-damped, linear oscillator The linearly-damped linear oscillator, driven
by a harmonic driving force, is of considerable importance to all branches of physics, and engineering. The
equation of motion can be written as

F(t
i+ T3+ wie = Q) (3.49)
m
where F(t) is the driving force. The complete solution of this second-order differential equation comprises

two components, the complementary solution (transient response), and the particular solution (steady-state
response). That is,

T(t)rotar = x(t)r + 2(t)s (3.65)
For the underdamped case, the transient solution is the complementary solution
F
z(t)r = Eoefgt cos (w1t — ) (3.66)
and the steady-state solution is given by the particular solution
Iy
x(t)s = m cos (wt — 9) (3.67)

V@2 —w?)? + (Tw)?

Resonance A detailed discussion of resonance and energy absorption for the driven linearly-damped linear
oscillator was given. For resonance of the linearly-damped linear oscillator the maximum amplitudes occur
at the following resonant frequencies

Resonant system Resonant frequency
undamped free linear oscillator wo = %
linearly-damped free linear oscillator wy = \/ w3 — (g)2

. . . . F 2
driven linearly-damped linear oscillator | wr = \/ w3 —2 (5)

The energy absorption for the steady-state solution for resonance is given by

x(t)s = At coswt + Agps sinwt (3.73)
where the elastic amplitude
R

Ay = m w2 — w? 3.74
) w1 .

while the absorptive amplitude

R

Agps = m Tw 3.75
(@§ — w?)” + (Tw)’ o)

The time average power input is given by only the absorptive term

1 F? Tw?
<P> = _FOWAabs =2 L; ) (3133)
2 2m (3 — w?)” + (Tw)

This power curve has the classic Lorentzian shape.
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Wave propagation The wave equation was introduced and both travelling and standing wave solutions
of the wave equation were discussed. Harmonic wave-form analysis, and the complementary time-sampled
wave form analysis techniques, were introduced in this chapter and in appendix I. The relative merits of
Fourier analysis and the digital Green’s function waveform analysis were illustrated for signal processing.

The concepts of phase velocity, group velocity, and signal velocity were introduced. The phase velocity
is given by

Uphase = % (3.117)
and group velocity
dw Ovyp,
roup — | 37, = ase kﬂ 3.128
UQ P < dk ) ko ’Uph + ak ( )

If the group velocity is frequency dependent then the information content of a wave packet travels at the
signal velocity which can differ from the group velocity.
The Wave-packet Uncertainty Principle implies that making a precise measurement of the frequency of a

sinusoidal wave requires that the wave packet be infinitely long. The standard deviation o (t) = \/(t2) — (t)*
characterizing the width of the amplitude of the wavepacket spectral distribution in the angular frequency
domain, o 4(w), and the corresponding width in time o 4(t), are related by :

oa(t) -oalw) =1 (Relation between amplitude uncertainties.)

The standard deviations for the spectral distribution and width of the intensity of the wave packet are
related by:

ort) - or(w) > é (3.134)
1 1 1
or(z)-o1(ks) > 5 or(y) -o1(ky) = 5 or(z)-or(k:) 2 5

This applies to all forms of wave motion, including sound waves, water waves, electromagnetic waves, or
matter waves.



Chapter 4

Nonlinear systems and chaos

4.1 Introduction

In nature only a subset of systems have equations of motion that are linear. Contrary to the impression
given by the analytic solutions presented in undergraduate physics courses, most dynamical systems in
nature exhibit non-linear behavior that leads to complicated motion. The solutions of non-linear equations
usually do not have analytic solutions, superposition does not apply, and they predict phenomena such as
attractors, discontinuous period bifurcation, extreme sensitivity to initial conditions, rolling motion, and
chaos. During the past four decades, exciting discoveries have been made in classical mechanics that are
associated with the recognition that nonlinear systems can exhibit chaos. Chaotic phenomena have been
observed in most fields of science and engineering such as, weather patterns, fluid flow, motion of planets in
the solar system, epidemics, changing populations of animals, birds and insects, and the motion of electrons
in atoms. The complicated dynamical behavior predicted by non-linear differential equations is not limited
to classical mechanics, rather it is a manifestation of the mathematical properties of the solutions of the
differential equations involved, and thus is generally applicable to solutions of first or second-order non-
linear differential equations. It is important to understand that the systems discussed in this chapter follow
a fully deterministic evolution predicted by the laws of classical mechanics, the evolution for which is based
on the prior history. This behavior is completely different from a random walk where each step is based on a
random process. The complicated motion of deterministic non-linear systems stems in part from sensitivity
to the initial conditions.

The French mathematician Poincaré is credited with being the first to recognize the existence of chaos
during his investigation of the gravitational three-body problem in celestial mechanics. At the end of the
nineteenth century Poincaré noticed that such systems exhibit high sensitivity to initial conditions character-
istic of chaotic motion, and the existence of nonlinearity which is required to produce chaos. Poincaré’s work
received little notice, in part it was overshadowed by the parallel development of the Theory of Relativity
and quantum mechanics at the start of the 20" century. In addition, solving nonlinear equations of motion
is difficult, which discouraged work on nonlinear mechanics and chaotic motion. The field blossomed during
the 1960’s when computers became sufficiently powerful to solve the nonlinear equations required to calculate
the long-time histories necessary to document the evolution of chaotic behavior. Laplace, and many other
scientists, believed in the deterministic view of nature which assumes that if the position and velocities of
all particles are known, then one can unambiguously predict the future motion using Newtonian mechanics.
Researchers in many fields of science now realize that this “clockwork universe” is invalid. That is, knowing
the laws of nature can be insufficient to predict the evolution of nonlinear systems in that the time evolu-
tion can be extremely sensitive to the initial conditions even though they follow a completely deterministic
development. There are two major classifications of nonlinear systems that lead to chaos in nature. The
first classification encompasses nondissipative Hamiltonian systems such as Poincaré’s three-body celestial
mechanics system. The other main classification involves driven, damped, non-linear oscillatory systems.

Nonlinearity and chaos is a broad and active field and thus this chapter will focus only on a few examples
that illustrate the general features of non-linear systems. Weak non-linearity is used to illustrate bifurcation
and asymptotic attractor solutions for which the system evolves independent of the initial conditions. The
common sinusoidally-driven linearly-damped plane pendulum illustrates several features characteristic of the

81
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evolution of a non-linear system from order to chaos. The impact of non-linearity on wavepacket propagation
velocities and the existence of soliton solutions is discussed. The example of the three-body problem is
discussed in chapter 11. The transition from laminar flow to turbulent flow is illustrated by fluid mechanics
discussed in chapter 16.8. Analytic solutions of nonlinear systems usually are not available and thus one
must resort to computer simulations. As a consequence the present discussion focusses on the main features
of the solutions for these systems and ignores how the equations of motion are solved.

4.2 Weak nonlinearity

Most physical oscillators become non-linear with increase in amplitude of the oscillations. Consequences
of non-linearity include breakdown of superposition, introduction of additional harmonics, and complicated
chaotic motion that has great sensitivity to the initial conditions as illustrated in this chapter. Weak non-
linearity is interesting since perturbation theory can be used to solve the non-linear equations of motion.

The potential energy function for a linear oscillator has a pure parabolic shape about the minimum
location, that is, U = %k:(x — x9)? where xg is the location of the minimum. Weak non-linear systems have
small amplitude oscillations Az about the minimum allowing use of the Taylor expansion

de (z0) n Az? d?U (z0) n Az d3U (x0) n Azt d*U (x0) n

U(Az) = Ulzo) + A dx 2! dx? 3! dx3 4! dz? (4.1)
By definition, at the minimum % = 0, and thus equation 4.1 can be written as
Ax? d? Az &3 Az d*
AU = U(Ag) — Ulzg) = 24U o) | Ar? dTU (o) | Aa” dTU (zo) (4.2)

2! dz? 3! dz? 4! dxt
2
For small amplitude oscillations the system is linear when only the second-order AQ—gfz %(fo) term in equation
4.2 is significant. The linearity for small amplitude oscillations greatly simplifies description of the oscillatory
motion in that superposition applies, and complicated chaotic motion is avoided. For slightly larger amplitude
motion, where the higher-order terms in the expansion are still much smaller than the second-order term,
then perturbation theory can be used as illustrated by the simple plane pendulum which is non linear since
the restoring force equals
0 00 0

mgsmG:mg(G—g—i—a—ﬁ—i—...) (4.3)
This is linear only at very small angles where the higher-order terms in the expansion can be neglected.
Consider the equation of motion at small amplitudes for the harmonically-driven, linearly-damped plane

pendulum
3
9+F€+w%sin0:é+F9+w%(0—%) = Fycos (wt) (4.4)

where only the first two terms in the expansion 4.3 have been included. It was shown in chapter 3 that when
sin @ ~ 0 then the steady-state solution of equation 4.4 is of the form

0 (t) = Acos (wt — 9) (4.5)

Insert this first-order solution into equation 4.4, then the cubic term in the expansion gives a term cos?wt =

1 (cos 3wt + 3coswt). Thus the perturbation expansion to third order involves a solution of the form

0 (t) = Acos (wt — §) + Bcos3(wt — 0) (4.6)

This perturbation solution shows that the non-linear term has distorted the signal by addition of the third
harmonic of the driving frequency with an amplitude that depends sensitively on €. This illustrates that the
superposition principle is not obeyed for this non-linear system, but, if the non-linearity is weak, perturbation
theory can be used to derive the solution of a non-linear equation of motion.

Figure 4.1 illustrates that for a potential U(z) = 222 + 2%, the 2* non-linear term are greatest at the
maximum amplitude x, which makes the total energy contours in state-space more rectangular than the
elliptical shape for the harmonic oscillator as shown in figure 3.3. The solution is of the form given in
equation 4.6.
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Figure 4.1: The left side shows the potential energy for a symmetric potential U(z) = 22? + 2. The right
side shows the contours of constant total energy on a state-space diagram.

4.1 Example: Non-linear oscillator

Assume that a non-linear oscillator has a potential given by

kx?  mAa?
Ulx) = — —
where X\ is small. Find the solution of the equation of motion to first order in X\, assuming © =0 at t = 0.

The equation of motion for the nonlinear oscillator is
au

mi = —— = —kx + mAz?
dz

If the mAz? term is neglected, then the second-order equation of motion reduces to a normal linear oscillator
with
xo = Asin (wot + @)

k
Wo = —
Vm

Assume that the first-order solution has the form

where

T = 2o+ Ar1

Substituting this into the equation of motion, and neglecting terms of higher order than A, gives
2
i1+ wizy =2 = 7[1 — cos (2wot)]
To solve this try a particular integral
x1 = B+ C cos (2wot)

and substitute into the equation of motion gives

A2 A2
—3wiC cos (2wot) + wi B = - ~ 5 o8 (2wot)
Comparison of the coefficients gives
A2
B = —
2wg
A2
C = —

2
6wg
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The homogeneous equation is
T+ w%xl =0

which has a solution of the form
x1 = Di sin (wot) + Ds cos (wot)

Thus combining the particular and homogeneous solutions gives

2 2
x1 = (A + ADy) sin (wot) + A A—2 + D5 cos (wot) + A—2 cos (2wot)
2w§ 6w

The nitial condition x =0 at t = 0 then gives

2A?
Dy = — 22
2 3w?
and WVt
1 2 1
x1 = (A+ ADy)sin (wot) + —5 |5 — = cos (wot) + = cos (2wot)
R 6

The constant (A + ADy) is given by the initial amplitude and velocity.

This system is nonlinear in that the output amplitude is not proportional to the input amplitude. Secondly,
a large amplitude second harmonic component is introduced in the output waveform; that is, for a non-linear
system the gain and frequency decomposition of the output differs from the input. Note that the frequency
composition is amplitude dependent. This particular example of a nonlinear system does not exhibit chaos.
The Laboratory for Laser Energetics uses nonlinear crystals to double the frequency of laser light.

4.3 Bifurcation, and point attractors

Interesting new phenomena, such as bifurcation, and attractors, occur when the non-linearity is large. In
chapter 3 it was shown that the state-space diagram (&, ) for an undamped harmonic oscillator is an
ellipse with dimensions defined by the total energy of the system. As shown in figure 3.5, for the damped
harmonic oscillator, the state-space diagram spirals inwards to the origin due to dissipation of energy. Non-
linearity distorts the shape of the ellipse or spiral on the state-space diagram, and thus the state-space, or
corresponding phase-space, diagrams, provide useful representations of the motion of linear and non-linear
periodic systems.

The complicated motion of non-linear systems makes it necessary to distinguish between transient and
asymptotic behavior. The damped harmonic oscillator executes a transient spiral motion that asymptotically
approaches the origin. The transient behavior depends on the initial conditions, whereas the asymptotic limit
of the steady-state solution is a specific location, that is called a point attractor. The point attractor for
damped motion in the anharmonic potential well

Uz) = 22% + 2* (4.7)

is at the minimum, which is the origin of the state-space diagram as shown in figure 4.1.
The more complicated one-dimensional potential well

U(z) =8 — 42 + 0.5z* (4.8)

shown in figure 4.2, has two minima that are symmetric about = 0 with a saddle of height 8.
The kinetic plus potential energies of a particle with mass m = 2, released in this potential, will be
assumed to be given by
E(x,%) = i* 4+ U(x) (4.9)

The state-space plot in figure 4.2 shows contours of constant energy with the minima at (z,4) = (£2,0).
At slightly higher total energy the contours are closed loops around either of the two minima at z = +2.
At total energies above the saddle energy of 8 the contours are peanut-shaped and are symmetric about
the origin. Assuming that the motion is weakly damped, then a particle released with total energy Ejora;
which is higher than Fg,4q;e will follow a peanut-shaped spiral trajectory centered at (x,z) = (0,0) in the
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Figure 4.2: The left side shows the potential energy for a bimodal symmetric potential U(z) = 8 — 422 +
0.52%. The right-hand figure shows contours of the sum of kinetic and potential energies on a state-space
diagram. For total energies above the saddle point the particle follows peanut-shaped trajectories in state-
space centered around (z, &) = (0,0). For total energies below the saddle point the particle will have closed
trajectories about either of the two symmetric minima located at (x, &) = (£2,0). Thus the system solution
bifurcates when the total energy is below the saddle point.

state-space diagram for Ejiora; > Fsaddie- FOr Fiotal < Esqddie there are two separate solutions for the two
minimum centered at x = +2 and © = 0. This is an example of bifurcation where the one solution for
FEiotal > Fsadare bifurcates into either of the two solutions for Fioiar < Fsaddie-

For an initial total energy Eiotq; > Fsqddie, damping will result in spiral trajectories of the particle that
will be trapped in one of the two minima. For Eyiq; > Esqaqie the particle trajectories are centered giving
the impression that they will terminate at (x, %) = (0,0) when the kinetic energy is dissipated. However, for
FEiotai < Esqddqie the particle will be trapped in one of the two minimum and the trajectory will terminate
at the bottom of that potential energy minimum occurring at (z, ) = (£2,0). These two possible terminal
points of the trajectory are called point attractors. This example appears to have a single attractor for
Eiotat > FEsadqie which bifurcates leading to two attractors at (z,2) = (£2,0) for Fiotar < Fsadaie- The
determination as to which minimum traps a given particle depends on exactly where the particle starts in
state space and the damping etc. That is, for this case, where there is symmetry about the z-axis, the
particle has an initial total energy Fiotar > FEsaddie, then the initial conditions with 7 radians of state space
will lead to trajectories that are trapped in the left minimum, and the other 7 radians of state space will be
trapped in the right minimum. Trajectories starting near the split between these two halves of the starting
state space will be sensitive to the exact starting phase. This is an example of sensitivity to initial conditions.

4.4 Limit cycles

4.4.1 Poincaré-Bendixson theorem

Coupled first-order differential equations in two dimensions of the form

i = f(z,y) v =g(z,y) (4.10)

occur frequently in physics. The state-space paths do not cross for such two-dimensional autonomous systems,
where an autonomous system is not explicitly dependent on time.

The Poincaré-Bendixson theorem states that, state-space, and phase-space, can have three possible paths:

(1) closed paths, like the elliptical paths for the undamped harmonic oscillator,

(2) terminate at an equilibrium point as t — 0o, like the point attractor for a damped harmonic oscillator,

(3) tend to a limit cycle as t — co.

The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor
independent of whether the initial values are inside or outside the limit cycle. The balance of dissipative forces
and driving forces often leads to limit-cycle attractors, especially in biological applications. Identification of
limit-cycle attractors, as well as the trajectories of the motion towards these limit-cycle attractors, is more
complicated than for point attractors.



86 CHAPTER 4. NONLINEAR SYSTEMS AND CHAOS

Closed path Point attractor Limit cycle

Figure 4.3: The Poincaré-Bendixson theorem allows the following three scenarios for two-dimensional au-
tonomous systems. (1) Closed paths as illustrated by the undamped harmonic oscillator. (2) Terminate at
an equilibrium point as t — oo, as illustrated by the damped harmonic oscillator, and (3) Tend to a limit
cycle as t — oo as illustrated by the van der Pol oscillator.

4.4.2 van der Pol damped harmonic oscillator:

The van der Pol damped harmonic oscillator illustrates a non-linear equation that leads to a well-studied,
limit-cycle attractor that has important applications in diverse fields. The van der Pol oscillator has an

equation of motion given by ,
d°x dx
iz T (z®—1) o
The non-linear u (:E2 — 1) ‘é—”t” damping term is unusual in that the sign changes when x = 1 leading to
positive damping for z > 1 and negative damping for < 1. To simplify equation 4.11, assume that the term
wiz = z, that is, w3 = 1.
This equation was studied extensively during the 1920’s and 1930’s by the Dutch engineer, Balthazar
van der Pol, for describing electronic circuits that incorporate feedback. The form of the solution can be
simplified by defining a variable y = ‘fl—f. Then the second-order equation 4.11 can be expressed as two

coupled first-order equations.

+wiz =0 (4.11)

dx
= — 4.12
y 7 (4.12)
d
d_:g = —z—p(®—1)y (4.13)
It is advantageous to transform the (i, z) state space to polar coordinates by setting
x = rcosf (4.14)
y = rsinf
and using the fact that 2 = 22 4 y? . Therefore
dr dx dy
= - 4.1
TR T (4.15)
Similarly for the angle coordinate
d d de
d_j = d—:COSQ T sin 6 (4.16)
d d do
d_i/ = d—:sine—i—rg cos (4.17)
Multiply equation 4.16 by y and 4.17 by x and subtract gives
db dy dx
277 = 4.1
at ~ at Ut (4.18)
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Figure 4.4: Solutions of the van der Pol system for p = 0.2 top row and g = 5 bottom row, assuming that
w3 = 1. The left column shows the time dependence x(t). The right column shows the corresponding (z, i)
state space plots. Upper: Weak nonlinearity, pu= 0.2; At large times the solution tends to one limit
cycle for initial values inside or outside the limit cycle attractor. The amplitude z(¢) for two initial condi-
tions approaches an approximately harmonic oscillation. Lower: Strong nonlinearity, p = 5; Solutions
approach a common limit cycle attractor for initial values inside or outside the limit cycle attractor while
the amplitude z(¢) approaches a common approximate square-wave oscillation.

Equations 4.15 and 4.18 allow the van der Pol equations of motion to be written in polar coordinates

% = —,u( 2cos?0 — 1)rsin29 (4.19)
df 2 2 ;
i —1—p(r®cos®0 — 1) sinf cos 0 (4.20)

The non-linear terms on the right-hand side of equations 4.19 — 20 have a complicated form.

Weak non-linearity: p <<1

In the limit that 4 — 0, equations 4.19,4.20 correspond to a circular state-space trajectory similar to the
harmonic oscillator. That is, the solution is of the form

x (t) = psin (t — to) (4.21)

where p and ty are arbitrary parameters. For weak non-linearity, u << 1 the angular equation 4.20 has a
rotational frequency that is unity since the sin 8 cos 6 term changes sign twice per period, in addition to the
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small value of pu. For p << 1 and r < 1, the radial equation 4.19 has a sign of the (7“2 cos? 6 — 1) term that
is positive and thus the radius increases monotonically to unity. For r > 1, the bracket is predominantly
negative resulting in a spiral decrease in the radius. Thus, for very weak non-linearity, this radial behavior
results in the amplitude spiralling to a well defined limit-cycle attractor value of p = 2 as illustrated by
the state-space plots in figure 4.4 for cases where the initial condition is inside or external to the circular
attractor. The final amplitude for different initial conditions also approach the same asymptotic behavior.

Dominant non-linearity: p >>1

For the case where the non-linearity is dominant, that is g >> 1, then as shown in figure 4.4, the system
approaches a well defined attractor, but in this case it has a significantly skewed shape in state-space, while
the amplitude approximates a square wave. The solution remains close to x = +2 until y = & ~ +7 and
then it relaxes quickly to x = —2 with y = & ~ 0. This is followed by the mirror image. This behavior is
called a relaxed vibration in that a tension builds up slowly then dissipates by a sudden relaxation process.
The seesaw is an extreme example of a relaxation oscillator where the seesaw angle switches spontaneously
from one solution to the other when the difference in their moment arms changes sign.

The study of feedback in electronic circuits was the stimulus for study of this equation by van der
Pol. However, Lord Rayleigh first identified such relazation oscillator behavior in 1880 during studies of
vibrations of a stringed instrument excited by a bow, or the squeaking of a brake drum. In his discussion of
non-linear effects in acoustics, he derived the equation

i —(a—bit)i + Wiz (4.22)

Differentiation of Rayleigh’s equation 4.22 gives

# — (a — 3bi?)i + wii = 0 (4.23)
Using the substitution of
3b .
Y =yo\/ —2 (4.24)
a
leads to the relations
. a y . a gy ay
_ /Y - . /22 =, /==L 4.25
v 3b Yo v 3b Yo N 3b Yo ( )

Substituting these relations into equation 4.23 gives

a g a 3bay?] y 2 /Ay
—- 7 _ | =7 | L —=Z =0 4.26
V3bye V30 [a b y%] o 0V 3y (4.26)

Multiplying by yg4/ % and rearranging leads to the van der Pol equation

i~ (e — )i —wiy =0 (4.27)
Yo
The rhythm of a heartbeat driven by a pacemaker is an important application where the self-stabilization of
the attractor is a desirable characteristic to stabilize an irregular heartbeat; the medical term is arrhythmia.
The mechanism that leads to synchronization of the many pacemaker cells in the heart and human body due
to the influence of an implanted pacemaker is discussed in chapter 14.12. Another biological application of
limit cycles is the time variation of animal populations.

In summary the non-linear damping of the van der Pol oscillator leads to a self-stabilized, single limit-
cycle attractor that is insensitive to the initial conditions. The van der Pol oscillator has many important
applications such as bowed musical instruments, electrical circuits, and human anatomy as mentioned above.
The van der Pol oscillator illustrates the complicated manifestations of the motion that can be exhibited by
non-linear systems
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4.5 Harmonically-driven, linearly-damped, plane pendulum

The harmonically-driven, linearly-damped, plane pendulum illustrates many of the phenomena exhibited by
non-linear systems as they evolve from ordered to chaotic motion. It illustrates the remarkable fact that
determinism does not imply either regular behavior or predictability. The well-known, harmonically-driven
linearly-damped pendulum provides an ideal basis for an introduction to non-linear dynamics’.

Consider a harmonically-driven linearly-damped plane pendulum of moment of inertia I and mass m in
a gravitational field that is driven by a torque due to a force F(t) = Fp coswt acting at a moment arm L.
The damping term is b and the angular displacement of the pendulum, relative to the vertical, is 8. The

equation of motion of the harmonically-driven linearly-damped simple pendulum can be written as
16 + b0 + mgLsin @ = LFp cos wt (4.28)

Note that the sinusoidal restoring force for the plane pendulum is non-linear for large angles 6. The natural

period of the free pendulum is
L
wo = \/% (4.29)

A dimensionless parameter v, which is called the drive strength, is defined by
F
y=2 (4.30)
mg

The equation of motion 4.28 can be generalized by introducing dimensionless units for both time # and
relative drive frequency @ defined by

7= wot a=2 (4.31)
wo
In addition, define the inverse damping factor @) as
(.4.70[
=20 4.32
; (432)
These definitions allow equation 4.28 to be written in the dimensionless form
d’0 1 df -
7] + Odi + sinf = v cos @t (4.33)

The behavior of the angle 0 for the driven damped plane pendulum depends on the drive strength -y
and the damping factor ). Consider the case where equation 4.33 is evaluated assuming that the damping
coefficient Q = 2, and that the relative angular frequency @ = %, which is close to resonance where chaotic
phenomena are manifest. The Runge-Kutta method is used to solve this non-linear equation of motion.

4.5.1 Close to linearity

For drive strength v = 0.2 the amplitude is sufficiently small that sin @ ~ 6, superposition applies, and the
solution is identical to that for the driven linearly-damped linear oscillator. As shown in figure 4.5, once
the transient solution dies away, the steady-state solution asymptotically approaches one attractor that has
an amplitude of +0.3 radians and a phase shift § with respect to the driving force. The abscissa is given
in units of the dimensionless time ¢ = wot. The transient solution depends on the initial conditions and
dies away after about 5 periods, whereas the steady-state solution is independent of the initial conditions
and has a state-space diagram that has an elliptical shape, characteristic of the harmonic oscillator. For all
initial conditions, the time dependence and state space diagram for steady-state motion approaches a unique
solution, called an “attractor”, that is, the pendulum oscillates sinusoidally with a given amplitude at the
frequency of the driving force and with a constant phase shift 4, i.e.

0(t) = Acos(wt —9). (4.34)

This solution is identical to that for the harmonically-driven, linearly-damped, linear oscillator discussed in
chapter 3.6.

LA similar approach is used by the book "Chaotic Dynamics” by Baker and Gollub[Bak96].
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Figure 4.5: Motion of the driven damped pendulum for drive strengths of v = 0.2, v = 0.9, v = 1.05, and
v = 1.078. The left side shows the time dependence of the deflection angle # with the time axis expressed
in dimensionless units ¢t. The right side shows the corresponding state-space plots. These plots assume

o= wio = %, Q@ = 2, and the motion starts with § = w = 0.
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y=1.078

y=1.081

Figure 4.6: The driven damped pendulum assuming that & = %, @Q = 2, with initial conditions 6(0) = -7,
w(0) = 0. The system exhibits period-two motion for drive strengths of v = 1.078 as shown by the state
space diagram for cycles 10 — 20. For v = 1.081 the system exhibits period-four motion shown for cycles
10 — 30.

4.5.2 Weak nonlinearity

Figure 4.5 shows that for drive strength v = 0.9, after the transient solution dies away, the steady-state
solution settles down to one attractor that oscillates at the drive frequency with an amplitude of slightly
more than § radians for which the small angle approximation fails. The distortion due to the non-linearity
is exhibited by the non-elliptical shape of the state-space diagram.

The observed behavior can be calculated using the successive approximation method discussed in chapter

4.2. That is, close to small angles the sine function can be approximated by replacing
1
sinf ~ 6 — —6°
' 6
in equation 4.33 to give
1

. . 1 ~
0+ Q@—&—w% <9— 603) =~y cos wt (4.35)

As a first approximation assume that
0(t) ~ Acos(t — §)

then the small ¢ term in equation 4.35 contributes a term proportional to cos® (0t — ). But
- 1 - -
cos® (@t — 6) = I (cos 3(wt — 6) + 3 cos(wt — 0))
That is, the nonlinearity introduces a small term proportional to cos 3(wt — §). Since the right-hand side of

equation 4.35 is a function of only coswt, then the terms in 6,60, and 0 on the left hand side must contain
the third harmonic cos 3(wt — §) term. Thus a better approximation to the solution is of the form

0(t) = A [cos(@t — &) + e cos 3(wt — §)] (4.36)
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where the admixture coefficient ¢ < 1. This successive approximation method can be repeated to add
additional terms proportional to cosn(wt — §) where n is an integer with n > 3. Thus the nonlinearity
introduces progressively weaker n-fold harmonics to the solution. This successive approximation approach
is viable only when the admixture coefficient € < 1. Note that these harmonics are integer multiples of w,
thus the steady-state response is identical for each full period even though the state space contours deviate
from an elliptical shape.

4.5.3 Onset of complication

Figure 4.5 shows that for v = 1.05 the drive strength is sufficiently strong to cause the transient solution for
the pendulum to rotate through two complete cycles before settling down to a single steady-state attractor
solution at the drive frequency. However, this attractor solution is shifted two complete rotations relative
to the initial condition. The state space diagram clearly shows the rolling motion of the transient solution
for the first two periods prior to the system settling down to a single steady-state attractor. The successive
approximation approach completely fails at this coupling strength since 6 oscillates through large values that
are multiples of 7.

Figure 4.5 shows that for drive strength v = 1.078 the motion evolves to a much more complicated
periodic motion with a period that is three times the period of the driving force. Moreover the amplitude
exceeds 27 corresponding to the pendulum oscillating over top dead center with the centroid of the motion
offset by 37 from the initial condition. Both the state-space diagram, and the time dependence of the motion,
illustrate the complexity of this motion which depends sensitively on the magnitude of the drive strength -,
in addition to the initial conditions, (#(0),w(0)) and damping factor @ as is shown in figure 4.6

4.5.4 Period doubling and bifurcation

For drive strength v = 1.078, with the initial condition (8(0),w (0)) = (0,0), the system exhibits a regular
motion with a period that is three times the drive period. In contrast, if the initial condition is [#(0) =
—%,w(0) = 0] then, as shown in figure 4.6, the steady-state solution has the drive frequency with no offset
in 6, that is, it exhibits period-one oscillation. This appearance of two separate and very different attractors
for v = 1.078, using different initial conditions, is called bifurcation.

An additional feature of the system response for v = 1.078 is that changing the initial conditions to
[0(0) = —F,w(0) = 0] shows that the amplitude of the even and odd periods of oscillation differ slightly
in shape and amplitude, that is, the system really has period-two oscillation. This period-two motion, i.e.
period doubling, is clearly illustrated by the state space diagram in that, although the motion still is
dominated by period-one oscillations, the even and odd cycles are slightly displaced. Thus, for different
initial conditions, the system for v = 1.078 bifurcates into either of two attractors that have very different
waveforms, one of which exhibits period doubling.

The period doubling exhibited for v = 1.078, is followed by a second period doubling when v = 1.081 as
shown in figure 4.6 . With increase in drive strength this period doubling keeps increasing in binary multiples
to period 8, 16, 32, 64 etc. Numerically it is found that the threshold for period doubling is v; = 1.0663,
from two to four occurs at v, = 1.0793 etc. Feigenbaum showed that this cascade increases with increase in
drive strength according to the relation that obeys

(/Yn - /Ynfl) (437)

Sl

(7n+1 - FYn) =

where & = 4.6692016, 0 is called a Feigenbaum number. As n — oo this cascading sequence goes to a limit
v, where
~v. = 1.0829 (4.38)

4.5.5 Rolling motion

It was shown that for v > 1.05 the transient solution causes the pendulum to have angle excursions exceeding
2w, that is, the system rolls over top dead center. For drive strengths in the range 1.3 < v < 1.4, the steady-
state solution for the system undergoes continuous rolling motion as illustrated in figure 4.7. The time
dependence for the angle exhibits a periodic oscillatory motion superimposed upon a monotonic rolling

motion, whereas the time dependence of the angular frequency w = fl—f is periodic. The state space plots
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(a) (b) (c)

Figure 4.7: Rolling motion for the driven damped plane pendulum for v = 1.4. (a) The time dependence
of angle 0(t) increases by 27 per drive period whereas (b) the angular velocity w(t) exhibits periodicity. (c)
The state space plot for rolling motion is shown with the origin shifted by 27 per revolution to keep the plot
within the bounds —7 < 6 < 47

for rolling motion corresponds to a chain of loops with a spacing of 27 between each loop. The state space
diagram for rolling motion is more compactly presented if the origin is shifted by 27 per revolution to keep
the plot within bounds as illustrated in figure 4.7c.

4.5.6 Onset of chaos

When the drive strength is increased to v = 1.105, then the system does not approach a unique attractor
as illustrated by figure 4.8le ft which shows state space orbits for cycles 25 — 200. Note that these orbits do
not repeat implying the onset of chaos. For drive strengths greater than v, = 1.0829 the driven damped
plane pendulum starts to exhibit chaotic behavior. The onset of chaotic motion is illustrated by making a 3-
dimensional plot which combines the time coordinate with the state-space coordinates as illustrated in figure
4.8right. This plot shows 16 trajectories starting at different initial values in the range —0.15 < 6 < 0.15
for v = 1.168. Some solutions are erratic in that, while trying to oscillate at the drive frequency, they never
settle down to a steady periodic motion which is characteristic of chaotic motion. Figure 4.8right illustrates
the considerable sensitivity of the motion to the initial conditions. That is, this deterministic system can
exhibit either order, or chaos, dependent on miniscule differences in initial conditions.

)iz fs)

0 -5

t (s) 20

Figure 4.8: Left: Space-space orbits for the driven damped pendulum with v = 1.105. Note that the orbits
do not repeat for cycles 25 to 200. Right: Time-state-space diagram for v = 1.168. The plot shows 16
trajectories starting with different initial values in the range —0.15 < 6 < 0.15.
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Figure 4.9: State-space plots for the harmonically-driven, linearly-damped, pendulum for driving amplitudes
of Fp = 0.5 and Fp = 1.2. These calculations were performed using the Runge-Kutta method by E. Shah,
(Private communication)

4.6 Differentiation between ordered and chaotic motion

Chapter 4.5 showed that motion in non-linear systems can exhibit both order and chaos. The transition
between ordered motion and chaotic motion depends sensitively on both the initial conditions and the model
parameters. It is surprisingly difficult to unambiguously distinguish between complicated ordered motion
and chaotic motion. Moreover, the motion can fluctuate between order and chaos in an erratic manner
depending on the initial conditions. The extremely sensitivity to initial conditions of the motion for non-
linear systems, makes it essential to have quantitative measures that can characterize the degree of order, and
interpret the complicated dynamical motion of systems. As an illustration, consider the harmonically-driven,
linearly-damped, pendulum with @ = 2, and driving force F(t) = Fp sin@f where & = % Figure 4.9 shows
the state-space plots for two driving amplitudes, Fp = 0.5 which leads to ordered motion, and Fp = 1.2
which leads to possible chaotic motion. It can be seen that for Fip = 0.5 the state-space diagram converges
to a single attractor once the transient solution has died away. This is in contrast to the case for Fp = 1.2,
where the state-space diagram does not converge to a single attractor, but exhibits possible chaotic motion.
Three quantitative measures can be used to differentiate ordered motion from chaotic motion for this system:;
namely, the Lyapunov exponent, the bifurcation diagram, and the Poincaré section, as illustrated below.

4.6.1 Lyapunov exponent

The Lyapunov exponent provides a quantitative and useful measure of the instability of trajectories, and how
quickly nearby initial conditions diverge. It compares two identical systems that start with an infinitesimally
small difference in the initial conditions in order to ascertain whether they converge to the same attractor
at long times, corresponding to a stable system, or whether they diverge to very different attractors, charac-
teristic of chaotic motion. If the initial separation between the trajectories in phase space at t = 0 is |§ Zp],
then to first order the time dependence of the difference can be assumed to depend exponentially on time.
That is,

6Z(1)| ~ e | Zo (4.39)

where A is the Lyapunov exponent. That is, the Lyapunov exponent is defined to be

A= lim lim 1ln [92(2)]
t—0062Z0—0 1 |Zo|

(4.40)

Systems for which the Lyapunov exponent A < 0 (negative), converge exponentially to the same attractor
solution at long times since [0Z(t)| — 0 for ¢ — oco. By contrast, systems for which A > 0 (positive) diverge
to completely different long-time solutions, that is, [0Z(t)] — oo for ¢ — oo. Even for infinitesimally
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Figure 4.10: Lyapunov plots of Af versus time for two initial starting points differing by A6y = 0.001rads.
The parameters are Q = 2, and F(t) = Fpsin(3t), and At = 0.04s. The Lyapunov exponent for Fp = 0.5
which is drawn as a dashed line, is convergent with A = —0.251. For Fp = 1.2 the exponent is divergent as
indicated by the dashed line which as a slope of A = 0.1538. These calculations were performed using the
Runge-Kutta method by E. Shah, (Private communication)

small differences in the initial conditions, systems having a positive Lyapunov exponent diverge to different
attractors, whereas when the Lyapunov exponent A < 0 they correspond to stable solutions.

Figure 4.10 illustrates Lyapunov plots for the harmonically-driven, linearly-damped, plane pendulum,
with the same conditions discussed in chapter 4.5. Note that for the small driving amplitude Fp = 0.5,
the Lyapunov plot converges to ordered motion with an exponent A = —0.251, whereas for Fp = 1.2, the
plot diverges characteristic of chaotic motion with an exponent A = 0.1538. The Lyapunov exponent usually
fluctuates widely at the local oscillator frequency, and thus the time average of the Lyapunov exponent must
be taken over many periods of the oscillation to identify the general trend with time. Some systems near an
order-to-chaos transition can exhibit positive Lyapunov exponents for short times, characteristic of chaos,
and then converge to negative A\ at longer time implying ordered motion. The Lyapunov exponents are
used extensively to monitor the stability of the solutions for non-linear systems. For example the Lyapunov
exponent is used to identify whether fluid flow is laminar or turbulent as discussed in chapter 16.8.

A dynamical system in n-dimensional phase space will have a set of n Lyapunov exponents {1, Ag, ..., A }
associated with a set of attractors, the importance of which depend on the initial conditions. Typically one
Lyapunov exponent dominates at one specific location in phase space, and thus it is usual to use the maximal
Lyapunov exponent to identify chaos.The Lyapunov exponent is a very sensitive measure of the onset of chaos
and provides an important test of the chaotic nature for the complicated motion exhibited by non-linear
systems.

4.6.2 Bifurcation diagram

The bifurcation diagram simplifies the presentation of the dynamical motion by sampling the status of
the system once per period, synchronized to the driving frequency, for many sets of initial conditions. The
results are presented graphically as a function of one parameter of the system in the bifurcation diagram. For
example, the wildly different behavior in the driven damped plane pendulum is represented on a bifurcation
diagram in figure 4.11, which shows the observed angular velocity w of the pendulum sampled once per drive
cycle plotted versus drive strength. The bifurcation diagram is obtained by sampling either the angle 6,
or angular velocity w, once per drive cycle, that is, it represents the observables of the pendulum using a
stroboscopic technique that samples the motion synchronous with the drive frequency. Bifurcation plots also
can be created as a function of either the time #, the damping factor @ , the normalized frequency & = wio,
or the driving amplitude 7.
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In the domain with drive strength v <
1.0663 there is one unique angle each drive
cycle as illustrated by the bifurcation di-
agram. For slightly higher drive strength
period-two bifurcation behavior results in
two different angles per drive cycle. The
Lyapunov exponent is negative for this re-
gion corresponding to ordered motion. The
cascade of period doubling with increase in
drive strength is readily apparent until chaos
sets in at the critical drive strength . when
there is a random distribution of sampled an-
gular velocities and the Lyapunov exponent
becomes positive. Note that at v = 1.0845
there is a brief interval of period-6 motion
followed by another region of chaos. Around
v = 1.1 there is a region that is primarily R o -
chaotic which is reflected by chaotic values of ’ ¥
the angular velocity on the bifurcation plot
and large positive values of the Lyapunov ex-
ponent. The region around v = 1.12 exhibits
period three motion and negative Lyapunov
exponent corresponding to ordered motion.
The 1.15 < v < 1.25 region is mainly chaotic
and has a large positive Lyapunov exponent.
The region with 1.3 < v < 1.4 is striking
in that this corresponds to rolling motion
with reemergence of period one and negative
Lyapunov exponent. This period-1 motion
is due to a continuous rolling motion of the
plane pendulum as shown in figure 4.7 where it is seen that the average 6 increases 27 per cycle, whereas the
angular velocity w exhibits a periodic motion. That is, on average the pendulum is rotating 27 per cycle.
Above v = 1.4 the system start to exhibit period doubling followed by chaos reminiscent of the behavior
seen at lower ~ values.

These results show that the bifurcation diagram nicely illustrates the order to chaos transitions for the
harmonically-driven, linearly-damped, pendulum. Several transitions between order and chaos are seen to
occur. The apparent ordered and chaotic regimes are confirmed by the corresponding Lyapunov exponents
which alternate between negative and positive values for the ordered and chaotic regions respectively.

Figure 4.11: Bifurcation diagram samples the angular velocity
w once per period for the driven, linearly-damped, plane pen-
dulum plotted as a function of the drive strength . Regions
of period doubling, and chaos, as well as islands of stability
all are manifest as the drive strength - is changed. Note that
the limited number of samples causes broadening of the lines
adjacent to bifurcations.

4.6.3 Poincaré Section

State-space plots are very useful for characterizing periodic motion, but they become too dense for useful
interpretation when the system approaches chaos as illustrated in figure 4.11. Poincaré sections solve this
difficulty by taking a stroboscopic sample once per cycle of the state-space diagram. That is, the point on
the state space orbit is sampled once per drive frequency. For period-1 motion this corresponds to a single
point (A, w). For period-2 motion this corresponds to two points etc. For chaotic systems the sequence of
state-space sample points follow complicated trajectories. Figure 4.12 shows the Poincaré sections for the
corresponding state space diagram shown in figure 4.9 for cycles 10 to 6000. Note the complicated curves do
not cross or repeat. Enlargements of any part of this plot will show increasingly dense parallel trajectories,
called fractals, that indicates the complexity of the chaotic cyclic motion. That is, zooming in on a small
section of this Poincaré plot shows many closely parallel trajectories. The fractal attractors are surprisingly
robust to large differences in initial conditions. Poincaré sections are a sensitive probe of periodic motion
for systems where periodic motion is not readily apparent.

In summary, the behavior of the well-known, harmonically-driven, linearly-damped, plane pendulum
becomes remarkably complicated at large driving amplitudes where non-linear effects dominate. That is,
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Figure 4.12: Three Poincaré section plots for the harmonically-driven, linearly-damped, pendulum for various
initial conditions with Fp = 1.2,0 = %, and At = 175. These calculations used the Runge-Kutta method
and were performed for 6000cycles by E. Shah (Private communication).

when the restoring force is non-linear. The system exhibits bifurcation where it can evolve to multiple
attractors that depend sensitively on the initial conditions. The system exhibits both oscillatory, and rolling,
solutions depending on the amplitude of the motion. The system exhibits domains of simple ordered motion
separated by domains of very complicated ordered motion as well as chaotic regions. The transitions between
these dramatically different modes of motion are extremely sensitive to the amplitude and phase of the
driver. Eventually the motion becomes completely chaotic. The Lyapunov exponent, bifurcation diagram,
and Poincaré section plots, are sensitive measures of the order of the motion. These three sensitive measures
of order and chaos are used extensively in many fields in classical mechanics. Considerable computing
capabilities are required to elucidate the complicated motion involved in non-linear systems. Examples
include laminar and turbulent flow in fluid dynamics and weather forecasting of hurricanes, where the
motion can span a wide dynamic range in dimensions from 107° to 10*m.

4.7 Wave propagation for non-linear systems

4.7.1 Phase, group, and signal velocities

Chapter 3 discussed the wave equation and solutions for linear systems. It was shown that, for linear systems,
the wave motion obeys superposition and exhibits dispersion, that is, a frequency-dependent phase velocity,
and, in some cases, attenuation. Nonlinear systems introduce intriguing new wave phenomena. For example
for nonlinear systems, second, and higher terms must be included in the Taylor expansion given in equation
4.2. These second and higher order terms result in the group velocity being a function of w, that is, group
velocity dispersion occurs which leads to the shape of the envelope of the wave packet being time dependent.
As a consequence the group velocity in the wave packet is not well defined, and does not equal the signal
velocity of the wave packet or the phase velocity of the wavelets. Nonlinear optical systems have been studied
experimentally where vg,oup << ¢, which is called slow light, while other systems have vgroup > ¢ which is
called superluminal light. The ability to control the velocity of light in such optical systems is of considerable
current interest since it has signal transmission applications.
The dispersion relation for a nonlinear system can be expressed as a Taylor expansion of the form

ok 1/ 0%k 9
k=ko+ (a)w_wo (w — wo) + 5 <W>w_wo (w — wo) + ..

where w is used as the independent variable since it is invariant to phase transitions of the system. Note
that the factor for the first derivative term is the reciprocal of the group velocity

Ik _ 1
Ow w=wq B Vgroup

(4.41)

(4.42)
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while the factor for the second derivative term is

(&) _9 {71 } _ <_1 LW“P) (4.43)
ow? wewo ow vg’I‘O’LLp(w) w=wo ’Ugroup ow wewo
which gives the velocity dispersion for the system.
Since w
k= (4.44)
Uphase
then 51
ok 1 1 o
T = — phase 4.45
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The inverse velocities for electromagnetic waves are best represented in terms of the corresponding refractive
indices n, where

c
n= (4.46)
Uphase
and the group refractive index
c
ngroup = (447)
Vgroup
Then equation 4.45 can be written in the more convenient form
on
n =n+w— 4.48
= (4.43)
Wave propagation for an optical system that
is subject to a single resonance gives one ex-
ample of nonlinear frequency response that has
applications to optics. n
Figure 4.13 shows that the real np and imag- R

inary n; parts of the phase refractive index ex-
hibit the characteristic resonance frequency de-
pendence of the sinusoidally-driven, linear oscil-
lator that was discussed in chapter 3.6 and as
illustrated in figure 3.10. Figure 4.13 also shows
the group refractive index ngroup computed us- I
ing equation 4.48.
Note that at resonance, 14,0 is reduced be-
low the non-resonant value which corresponds
to superluminal (fast) light, whereas in the
wings of the resonance 7n4,0up is larger than the
non-resonant value corresponding to slow light.
Thus the nonlinear dependence of the refractive n
index n on angular frequency w leads to fast g
or slow group velocities for isolated wave pack-
ets. Velocities of light as slow as 17m/ sec have
been observed. Experimentally the energy ab-
sorption that occurs on resonance makes it dif-
ficult to observe the superluminal electromag-
netic wave at resonance.

Note that Sommerfeld and Br.illouin showed  Figure 4.13: The real and imaginary parts of the phase
that even though the group velocity may exceed refractive index n plus the real part of the group refractive

¢, the signal velocity, which marks the arrival of jndex associated with an isolated atomic resonance.
the leading edge of the optical pulse, does not

exceed c, the velocity of light in vacuum, as was
postulated by Einstein.Bril4]
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4.7.2 Soliton wave propagation

The soliton is a fascinating and very special
wave propagation phenomenon that occurs for

certain non-linear systems. The soliton is a self- *ﬁwﬁ'\
reinforcing solitary localized wave packet that e e
maintains its shape while travelling long distances W‘\"

at a constant speed. Solitons are caused by a
cancellation of phase modulation resulting from
non-linear velocity dependence, and the group ve-
locity dispersive effects in a medium. Solitons
arise as solutions of a widespread class of weakly-
nonlinear dispersive partial differential equations
describing many physical systems. Figure 4.14
shows a soliton comprising a solitary water wave
approaching the coast of Hawaii. While the soli-
ton in Fig. 4.14 may appear like a normal wave,
it is unique in that there are no other waves ac-
companying it. This wave was probably created

far away from the shore when a normal wave was  Figure 4.14: A solitary wave approaches the coast of Hawaii.

modulated by a geometrical change in the ocean (Image: Robert Odom/University of Washington)
depth, such as the rising sea floor, which forced

it into the appropriate shape for a soliton. The
wave then was able to travel to the coast intact,
despite the apparently placid nature of the ocean near the beach. Solitons are notable in that they interact
with each other in ways very different from normal waves. Normal waves are known for their complicated
interference patterns that depend on the frequency and wavelength of the waves. Solitons, can pass right
through each other without being a affected at all. This makes solitons very appealing to scientists because
soliton waves are more sturdy than normal waves, and can therefore be used to transmit information in ways
that are distinctly different than for normal wave motion. For example, optical solitons are used in optical
fibers made of a dispersive, nonlinear optical medium, to transmit optical pulses with an invariant shape.

Solitons were first observed in 1834 by John Scott Russell (1808 — 1882). Russell was an engineer con-
ducting experiments to increase the efficiency of canal boats. His experimental and theoretical investigations
allowed him to recreate the phenomenon in wave tanks. Through his extensive studies, Scott Russell noticed
that soliton propagation exhibited the following properties:

e The waves are stable and hold their shape for long periods of time.

e The waves can travel over long distances at uniform speed.

e The speed of propagation of the wave depends on the size of the wave, with larger waves traveling
faster than smaller waves.

e The waves maintained their shape when they collided - seemingly passing right through each other.

Scott Russell’s work was met with scepticism by the scientific community. The problem with the Wave
of Translation was that it was an effect that depended on nonlinear effects, whereas previously existing
theories of hydrodynamics (such as those of Newton and Bernoulli) only dealt with linear systems. George
Biddell Airy, and George Gabriel Stokes, published papers attacking Scott Russell’s observations because
the observations could not be explained by their theories of wave propagation in water. Regardless, Scott
Russell was convinced of the prime importance of the Wave of Translation, and history proved that he was
correct. Scott Russell went on to develop the “wave line” system of hull construction that revolutionized
nineteenth century naval architecture, along with a number of other great accomplishments leading him to
fame and prominence. Despite all of the success in his career, he continued throughout his life to pursue his
studies of the Wave of Translation.

In 1895 Korteweg and de Vries developed a wave equation for surface waves for shallow water.

3
2. o (00,
ot 0x3 ox

A solution of this equation has the characteristics of a solitary wave with fixed shape. It is given by
substituting the form ¢(x,t) = f(x — vt) into the Korteweg-de Vries equation which gives

(4.49)
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of  of of
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Integrating with respect to = gives
d2
2 _
3f + @ - Cf =C (451)
where C' is a constant of integration. This non-linear equation has a solution
1
oz, t) = esec h? {?(x — ot — a)} (4.52)

where a is a constant. Equation 4.52 is the equation of a solitary wave moving in the +xz direction at a
velocity v.

Soliton behavior is observed in phenomena such as tsunamis, tidal bores that occur for some rivers,
signals in optical fibres, plasmas, atmospheric waves, vortex filaments, superconductivity, and gravitational
fields having cylindrical symmetry. Much work has been done on solitons for fibre optics applications. The
soliton’s inherent stability make long-distance transmission possible without the use of repeaters, and could
potentially double the transmission capacity.

Before the discovery of solitons, mathematicians were under the impression that nonlinear partial differ-
ential equations could not be solved exactly. However, solitons led to the recognition that there are non-linear
systems that can be solved analytically. This discovery has prompted much investigation into these so-called
“integrable systems.” Such systems are rare, as most non-linear differential equations admit chaotic behavior
with no explicit solutions. Integrable systems nevertheless lead to very interesting mathematics ranging from
differential geometry and complex analysis to quantum field theory and fluid dynamics.

Many of the fundamental equations in physics (Maxwell’s, Schrodinger’s) are linear equations. However,
physicists have begun to recognize many areas of physics in which nonlinearity can result in qualitatively
new phenomenon which cannot be constructed via perturbation theory starting from linearized equations.
These include phenomena in magnetohydrodynamics, meteorology, oceanography, condensed matter physics,
nonlinear optics, and elementary particle physics. For example, the European space mission Cluster detected
a soliton-like electrical disturbances that travelled through the ionized gas surrounding the Earth starting
about 50,000 kilometers from Earth and travelling towards the planet at about 8 km/s. It is thought that
this soliton was generated by turbulence in the magnetosphere.

Efforts to understand the nonlinearity of solitons has led to much research in many areas of physics. In
the context of solitons, their particle-like behavior (in that they are localized and preserved under collisions)
leads to a number of experimental and theoretical applications. The technique known as bosonization allows
viewing particles, such as electrons and positrons, as solitons in appropriate field equations. There are
numerous macroscopic phenomena, such as internal waves on the ocean, spontaneous transparency, and the
behavior of light in fiber optic cable, that are now understood in terms of solitons. These phenomena are
being applied to modern technology.

4.8 Summary

The study of the dynamics of non-linear systems remains a vibrant and rapidly evolving field in classical
mechanics as well as many other branches of science. This chapter has discussed examples of non-linear
systems in classical mechanics. It was shown that the superposition principle is broken even for weak
nonlinearity. It was shown that increased nonlinearity leads to bifurcation, point attractors, limit-cycle
attractors, and sensitivity to initial conditions.

Limit-cycle attractors: The Poincaré-Bendixson theorem for limit cycle attractors states that the
paths, both in state-space and phase-space, can have three possible paths:

(1) closed paths, like the elliptical paths for the undamped harmonic oscillator,

(2) terminate at an equilibrium point as ¢t — oo, like the point attractor for a damped harmonic oscillator,

(3) tend to a limit cycle as t — oo.

The limit cycle is unusual in that the periodic motion tends asymptotically to the limit-cycle attractor
independent of whether the initial values are inside or outside the limit cycle. The balance of dissipative forces
and driving forces often leads to limit-cycle attractors, especially in biological applications. Identification of
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limit-cycle attractors, as well as the trajectories of the motion towards these limit-cycle attractors, is more
complicated than for point attractors.

The van der Pol oscillator is a common example of a limit-cycle system that has an equation of motion
of the form 2 p

x x
Pl +u (362 — 1) T

The van der Pol oscillator has a limit-cycle attractor that includes non-linear damping and exhibits
periodic solutions that asymptotically approach one attractor solution independent of the initial conditions.
There are many examples in nature that exhibit similar behavior.

Harmonically-driven, linearly-damped, plane pendulum: The non-linearity of the well-known
driven linearly-damped plane pendulum was used as an example of the behavior of non-linear systems in
nature. It was shown that non-linearity leads to discontinuous period bifurcation, extreme sensitivity to
initial conditions, rolling motion and chaos.

Differentiation between ordered and chaotic motion: Lyapunov exponents, bifurcation diagrams,
and Poincaré sections were used to identify the transition from order to chaos. Chapter 16.8 discusses
the non-linear Navier-Stokes equations of viscous-fluid flow which leads to complicated transitions between
laminar and turbulent flow. Fluid flow exhibits remarkable complexity that nicely illustrates the dominant
role that non-linearity can have on the solutions of practical non-linear systems in classical mechanics.

Wave propagation for non-linear systems: Non-linear equations can lead to unexpected behavior
for wave packet propagation such as fast or slow light as well as soliton solutions. Moreover, it is notable
that some non-linear systems can lead to analytic solutions.

The complicated phenomena exhibited by the above non-linear systems is not restricted to classical
mechanics, rather it is a manifestation of the mathematical behavior of the solutions of the differential
equations involved. That is, this behavior is a general manifestation of the behavior of solutions for second-
order differential equations. Exploration of this complex motion has only become feasible with the advent
of powerful computer facilities during the past three decades. The breadth of phenomena exhibited by
these examples is manifest in myriads of other nonlinear systems, ranging from many-body motion, weather
patterns, growth of biological species, epidemics, motion of electrons in atoms, etc. Other examples of non-
linear equations of motion not discussed here, are the three-body problem, which is mentioned in chapter
11, and turbulence in fluid flow which is discussed in chapter 16.

It is stressed that the behavior discussed in this chapter is very different from the random walk prob-
lem which is a stochastic process where each step is purely random and not deterministic. This chapter
has assumed that the motion is fully deterministic and rigorously follows the laws of classical mechanics.
Even though the motion is fully deterministic, and follows the laws of classical mechanics, the motion is
extremely sensitive to the initial conditions and the non-linearities can lead to chaos. Computer modelling is
the only viable approach for predicting the behavior of such non-linear systems. The complexity of solving
non-linear equations is the reason that this book will continue to consider only linear systems. Fortunately,
in nature, non-linear systems can be approximately linear when the small-amplitude assumption is applicable.

+wir=0 (4.11)
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Chapter 5

Calculus of variations

5.1 Introduction

The prior chapters have focussed on the intuitive Newtonian approach to classical mechanics, which is based
on vector quantities like force, momentum, and acceleration. Newtonian mechanics leads to second-order
differential equations of motion. The calculus of variations underlies a powerful alternative approach to
classical mechanics that is based on identifying the path that minimizes an integral quantity. This integral
variational approach was first championed by Gottfried Wilhelm Leibniz, contemporaneously with Newton’s
development of the differential approach to classical mechanics.

During the 18" century, Bernoulli, who was a student of Leibniz, developed the field of variational
calculus which underlies the integral variational approach to mechanics. He solved the brachistochrone
problem which involves finding the path for which the transit time between two points is the shortest. The
integral variational approach also underlies Fermat’s principle in optics, which can be used to derive that
the angle of reflection equals the angle of incidence, as well as derive Snell’s law. Other applications of the
calculus of variations include solving the catenary problem, finding the maximum and minimum distances
between two points on a surface, polygon shapes having the maximum ratio of enclosed area to perimeter,
or maximizing profit in economics. Bernoulli, developed the principle of virtual work used to describe
equilibrium in static systems, and d’Alembert extended the principle of virtual work to dynamical systems.
Euler, the preeminent Swiss mathematician of the 18" century and a student of Bernoulli, developed the
calculus of variations with full mathematical rigor. The culmination of the development of the Lagrangian
variational approach to classical mechanics is done by Lagrange (1736-1813), who was a student of Euler,.

The Euler-Lagrangian approach to classical mechanics stems from a deep philosophical belief that the
laws of nature are based on the principle of economy.That is, the physical universe follows paths through
space and time that are based on extrema principles. The standard Lagrangian L is defined as the difference
between the kinetic and potential energy, that is

L=T-U (5.1)

Chapters 6 through 9 will show that the laws of classical mechanics can be expressed in terms of Hamilton’s
variational principle which states that the motion of the system between the initial time ¢;and final time
to follows a path that minimizes the scalar action integral S defined as the time integral of the Lagrangian.

ta
S = / Ldt (5.2)
t1

The calculus of variations provides the mathematics required to determine the path that minimizes the
action integral. This variational approach is both elegant and beautiful, and has withstood the rigors of
experimental confirmation. In fact, not only is it an exceedingly powerful alternative approach to the intuitive
Newtonian approach in classical mechanics, but Hamilton’s variational principle now is recognized to be more
fundamental than Newton’s Laws of Motion. The Lagrangian and Hamiltonian variational approaches to
mechanics are the only approaches that can handle the Theory of Relativity, statistical mechanics, and the
dichotomy of philosophical approaches to quantum physics.
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5.2 Euler’s differential equation

The calculus of variations, presented here, underlies the powerful variational approaches that were developed
for classical mechanics. Variational calculus, developed for classical mechanics, now has become an essential
approach to many other disciplines in science, engineering, economics, and medicine.

For the special case of one dimension, the calculus of variations reduces to varying the function y(z) such
that the scalar functional F' is an extremum, that is, it is a maximum or minimum, where.

r |  F @),y ()l da (5.3)

Here x is the independent variable, y(x) the dependent variable, plus its first derivative ' = %. The quantity
fly(x),y' (x); z] has some given dependence on y,y" and x. The calculus of variations involves varying the
function y(z) until a stationary value of F' is found, which is presumed to be an extremum. This means that
if a function y = y(x) gives a minimum value for the scalar functional F, then any neighboring function, no
matter how close to y(x), must increase F.  For all paths, the integral F is taken between two fixed points,
x1,y1 and xa,ys. Possible paths between the initial and final points are illustrated in figure 5.1. Relative to
any neighboring path, the functional F' must have a stationary value which is presumed to be the correct
extremum path.

Define a neighboring function using a parametric representation y(e, ), such that for e = 0, y = y(0,z) =
y(x) is the function that yields the extremum for F'. Assume that an infinitesimally small fraction € of the
neighboring function n(z) is added to the extremum path y(z). That is, assume

y(ﬁ,x) = y(07m)+677(x) (54)

where it is assumed that the extremum function y(0,x) and the auxiliary function n(z) are well behaved
functions of « with continuous first derivatives, and where n(z) vanishes at z1 and x4, because, for all possible
paths, the function y(e, ) must be identical with y(z) at the end points of the path, i.e. n(z1) = n(z2) = 0.
The situation is depicted in figure 5.1. It is possible to express any such parametric family of curves F' as
a function of €

F(e) = /””2 fly(e,x),y (e, z); 2] d (5.5)

The condition that the integral has a stationary (extremum) value is that F' be independent of € to first
order along the path. That is, the extremum value occurs for e = 0 where

<Cfi_}£>6_0 =0 (5.6)

for all functions n(x). This is illustrated on the right side of figure 5.1.
Applying condition (5.6) to equation (5.5), and since z is independent of €, then

oF _ [ (010 0r oy, _
86_/96 <3y36+8y’ Oe de =0 (5.7)

1

Since the limits of integration are fixed, the differential operation affects only the integrand. From equations
(5.4),

1o}
5 = (@) (5.8)
and o J
Yy Ul
B = I (5.9)

Consider the second term in the integrand

= Qf dy (" 9f dn

o= apa® (10)

Z1 1
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y(x)
F (¢)
YO + en(®) / / \
Varied p< \
—/
Extremum path, y(x)
nx) X1 X2 b
X €
O

Figure 5.1: The left shows the extremum y(z) and neighboring paths y(e, z) = y(z) + en(z) between (x1,y1)
and (x2,y2) that minimizes the function F = fff fly(x),y (x); ] de. The right shows the dependence of F'
as a function of the admixture coefficient € for a maximum (upper) or a minimum (lower) at e = 0.

/udv =uv — /vdu (5.11)

/I 2 g_;Z_de = {g—;n(z)]wl 7/96 27](1’)% (8—5,> dx (5.12)

1 1

Integrate by parts

gives

Note that the first term on the right-hand side is zero since by definition % =n(z) =0 at 1 and z5. Thus

n
oF _ [ (ofoy ofoyN\ ., _ ("= (of .~ . d (Of
e _/z (8y e oy 06)d$_/x <0y (@) =n@) g <5y’)> e

1 1

Thus equation 5.7 reduces to

oF 2 /09f  d of
= _ - _ 22 d 5.13
Oe /:c1 <6y dx 8y’> n(@)de (5:13)
The function %—f will be an extremum if it is stationary at e = 0. That is,
oF 2 09f  d of
= _ = _ =22 der =0 5.14
Oe /xl <8y dx 8y’> n(@)de (5.14)
This integral now appears to be independent of €. However, the functions y and 3’ occurring in the derivatives

are functions of e. Since ( 68_1:)5—0 must vanish for a stationary value, and because n(x) is an arbitrary function

subject to the conditions stated, then the above integrand must be zero. This derivation that the integrand
must be zero leads to Euler’s differential equation

0 d o

of _dof (5.15)

dy dz dy
where y and 3/ are the original functions, independent of €. The basis of the calculus of variations is that the
function y(z) that satisfies Euler’s equation is an stationary function. Note that the stationary value could
be either a maximum or a minimum value. When Euler’s equation is applied to mechanical systems using
the Lagrangian as the functional, then Euler’s differential equation is called the Euler-Lagrange equation.
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5.3 Applications of Euler’s equation

5.1 Example: Shortest distance between two points

Consider the path lies in the © — y plane. The infinitessimal length of arc is

2
ds = \/dx? + dy? = 1—&-(%) dx
dz

Then the length of the arc is

The function f is

f=y1+ ) !
Therefore
af XV
= —p
Ay
and )
ﬁ -y XY,
/
W i)
Inserting these into Euler’s equation 5.15 gives
d ! X
04— [ —L—1]=0 . g
dz 1+ () Shortest distance between two points in a plane.
that is
y/
—————— = constant = C
1+ (y)?
This is valid if
, C
y = —— —

V1—(C?
Therefore
y=axr—+b

which is the equation of a straight line in the plane. Thus the shortest path between two points in a plane is
a straight line between these points, as is intuitively obvious. This stationary value obviously is a minimum.

This trivial example of the use of Euler’s equation to determine an extremum value has given the obvious
answer. It has been presented here because it provides a proof that a straight line is the shortest distance in
a plane and illustrates the power of the calculus of variations to determine extremum paths.

5.2 Example: Brachistochrone problem

The Brachistochrone problem involves finding the path having the minimum transit time between two
points. The Brachistochrone problem stimulated the development of the calculus of variations by John
Bernoulli and Euler. For simplicity, take the case of frictionless motion in the x — y plane with a uni-
form gravitational field acting in the y direction, as shown in the adjacent figure. The question is what
constrained path will result in the minimum transit time between two points (x1y1) and (T2y2).
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Consider that the particle of mass m starts at the origin x1 = 0,y1 = 0 with zero velocity. Since the
problem conserves energy and assuming that initially E = KE + PE =0 then

1
imv2 —mgy =0

That is
29y

The transit time is given by

t_/ﬂfzﬁ / /d$2+dy / 1+.’E12 y
X1 v
) da

d

where x' = Y Note that, in this example, the independent variable has been chosen to be y and the dependent

variable is z(y).
The function f of the integral is

1 (1 +2?)

75

Factor out the constant \/2g term, which does not affect the final equation, and note that

/=

of
=z -
ox
of _ __«
or
y(1+ @)
Therefore Euler’s equation gives
d /
T\ (1+ @)
or (x5 ¥ ma 2na X
.'EI 1 0
= constant = ——
(1+@)?) . 1
Y P(x,y)
(XZ’ yz)
That is " 2at
- — i Cycloid
y (1 + (2’ )2> 2a
This may be rewritten as
/92 ydy Yy
€T = o The Bachistochrone problem involves finding the path for
n V2o -y ’ finding e btk

the minimum transit time for constrained frictionless

Change the variable to y = a(1 — cosf) gives motion in a uniform gravitational field.

that dy = asin 0df, leading to the integral

SCZ/CL(l*COS@)dO

or
x = a(f — sin 0) + constant
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The parametric equations for a cycloid passing through the origin are

x = a(f —sinb)

y = a(l—cosh)
which is the form of the solution found. That is, the shortest time between two points is obtained by con-
straining the motion of the mass to follow a cycloid shape. Thus the mass first accelerates rapidly by falling

down steeply and then follows the curve and coasts upward at the end. The elapsed time is obtained by
inserting the above parametric relations for x and y, in terms of 0, into the transit time integral giving

t= \/gﬁ where a and 0 are fized by the end point coordinates. Thus the time to fall from starting with zero

velocity at the cusp to the minimum of the cycloid is W\/g. If yo = y1 =0 then xo = 2mwa which defines the

shape of the cycloid and the minimum time is 27 % = ,/%. If the mass starts with a non-zero initial

velocity, then the starting point is not at the cusp of the cycloid, but down a distance d such that the kinetic
enerqgy equals the potential energy difference from the cusp.

A modern application of the Brachistochrone problem is determination of the optimum shape of the low-
friction emergency chute that passengers slide down to evacuate a burning aircraft. Bernoulli solved the
problem of rapid evacuation of an aircraft two centuries before the first flight of a powered aircraft.

5.3 Example: Minimal travel cost

Assume that the cost of flying an aircraft at height z is e "% per unit distance of flight-path, where k is a
positive constant. Consider that the aircraft flies in the (x, z)-plane from the point (—a,0) to the point (a,0)
where z = 0 corresponds to ground level, and where the z-axis points vertically upwards. Find the extremal
for the problem of minimizing the total cost of the journey.

The differential arc-length element of the flight path ds can be written as

ds = \/dz? + dz2 = \/1 + 22dx

dz

where 2" = $%. Thus the cost integral to be minimized is

“+a “+a
C= / e "*ds = e "*\/1 + 22dx

The function of this integral is
f=e "1+ 27

The partial differentials required for the Fuler equations are

d 8f lee—nz Hz/Qe—rcz Z//Z/2€—rcz
dr o V1122 VIt22 (1422
? = —kre "1+ 22
z
Therefore Euler’s equation equals

8f d af _ Z//e—nz I{JZ/2€7HZ Z//Z/Qefnz
_— 4 = _ rZ\ /1 12 =0
9z  dx oz ke +z N + V1Tt 22 + (1 —|—Z’2)3/2

This can be simplified by multiplying the radical to give

4

K — 2:‘12/2 _ HZ/ _ z// _ Z”Z/2 + KZ/Z + Kzl4 + Z//z/2 =0

Cancelling terms gives
2+ (1+2%) =0

Separating the variables leads to

d !
arctan 2z’ = c rkdx = —kz +¢1
2?41
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Integration gives

cos(c1—Kx)
z z 1 k) —1 In ( Coster Tra)
z(w) = / dz = / tan(c; — kx)dr = n(cos(er — k) - n(cos(er + £a)) +c2 = —( (I;Jr )) + c2

Using the initial condition that z(—a) = 0 gives co = 0. Similarly the final condition z(a) = 0 implies that
c1 = 0. Thus Euler’s equation has determined that the optimal trajectory that minimizes the cost integral C

w (z) = 2 1n (cos(m)>

K cos(ka)

This example is typical of problems encountered in economics.

5.4 Selection of the independent variable

A wide selection of variables can be chosen as the independent variable for variational calculus. The derivation
of Euler’s equation and example 5.1 both assumed that the independent variable is x, whereas example
5.2 used y as the independent variable, example 5.3 used z, and Lagrange mechanics uses time ¢ as the
independent variable. Selection of which variable to use as the independent variable does not change the
physics of a problem, but some selections can simplify the mathematics for obtaining an analytic solution.
The following example of a cylindrically-symmetric soap-bubble surface formed by blowing a soap bubble that
stretches between two circular hoops, illustrates the importance when selecting the independent variable.

5.4 Example: Surface area of a cylindrically-symmetric soap bubble

Consider a cylindrically-symmetric soap-bubble surface
formed by blowing a soap bubble that stretches between two
circular hoops. The surface energy, that results from the sur- 7z
face tension of the soap bubble, is minimized when the surface J
area of the bubble is minimized. Assume that the azxes of the
two hoops lie along the z axis as shown in the adjacent figure.

It is intuitively obvious that the soap bubble having the mini-

mum surface area that is bounded by the two hoops will have

a circular cross section that is concentric with the symmetry =
azis, and the radius will be smaller between the two hoops.
Therefore, intuition can be used to simplify the problem to
finding the shape of the contour of revolution around the axis £
of symmetry that defines the shape of the surface of minimum
surface area. Use cylindrical coordinates (p, 0, z) and assume
that hoop 1 at z1 has radius p; and hoop 2 at z2 has radius
py. Consider the cases where either p, or z, are selected to
be the independent variable.

Cylindrically-symmetric surface formed by

The differential arc-length element of the circular annu- ~ Yotation about the z axis of a soap bubble
lus at constant 0 between z and z + dz is given by ds = suspended between two identical hoops
\/dz? + dp?. Therefore the area of the infinitessimal circular centred on the z axis.
annulus is dS = 2mpds which can be integrated to give the
area of the surface S of the soap bubble bounded by the two
circular hoops as

2
S:27r/ N dz? + dp?
1

Independent variable z

Assuming that z is the independent variable, then the surface area can be written as

2 2 2
S:Qﬂ'/ P 1+<?) dz:27r/ o/ 1+ p2dz
1 2 1
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where p' = %. The function of the surface integral is f = p\/1 + p'2. The derivatives are

Ff _ Ax2
oy 1+p

and ,
o -
/
% 1+ (p)?
Therefore Euler’s equation gives
d /
d_ L _ 1 + p/2 =0
S\Y1+ ()

This is not an easy equation to solve.

Independent variable p

Consider the case where the independent variable is chosen to be p, then the surface integral can be written

as
2 dz\?
5:277//) 1+<d—) dp:27r/p\/1+z’2dp
1 P

where z' = g—;. Thus the function of the surface integral is f = pv/1 + 2'2. The derivatives are

of _

82_0

and

af /

_ Pz
0z /1 v (z’)2

Therefore Euler’s equation gives

0

pz' _
dp /1 N (Z,)Q
/
P,
1+ (2)°

where a is a constant. This can be rewritten as

That is

or

Tdp 2 a2
The integral of this is
z=acosh™* (£> +b
a

That is
z—b
p = acosh ——
a

which is the equation of a catenary. The catenary is the shape of a uniform flexible cable hung in a uniform
gravitational field. The constants a and b are given by the end points. The physics of the solution must be
identical for either choice of independent variable. However, mathematically one case is easier to solve than
the other because, in the latter case, one term in Fuler’s equation is zero.
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5.5 Functions with several independent variables y;(x)

The discussion has focussed on systems having only a single function y(x) such that the functional is an
extremum. It is more common to have a functional that is dependent upon several independent variables
fln(@),y)(z), y2(x), y5(x), ....; 2] which can be written as

zy N
F= [ 3 1) yia)ial do (5.16)

where 1 = 1,2,3,...., V.
By analogy with the one dimensional problem, define neighboring functions 7, for each variable. Then

yi(e,z) = v:(0,2) + en,;(z) (5.17)
dy;(e,x)  dy;(0,z) dn,
! et — _
vile,z) = dz dz te dz

where 7, are independent functions of = that vanish at x; and z,. Using equations 5.12 and 5.17 leads to
the requirements for an extremum value to be

OF _ ["N~(0f Oy O8O\ _ [~ (9f _ d0f _
R A Cre s re LR D Craer= ) KE S

1 %

If the variables y;(z) are independent, then the 7,(x) are independent. Since the 7;(z) are independent,
then evaluating the above equation at e = 0 implies that each term in the bracket must vanish independently.
That is, Euler’s differential equation becomes a set of N equations for the N independent variables

af d of

where ¢ = 1,2,3..N. Thus, each of the N equations can be solved independently when the N wvariables are
independent. Note that Euler’s equation involves partial derivatives for the dependent variables y; , y; and
the total derivative for the independent variable x.

5.5 Example: Fermat’s Principle

In 1662 Fermat’s proposed that the propagation of
light obeyed the generalized principle of least transit time.
In optics, Fermat’s principle, or the principle of least o, yl’o)P-
time, is the principle that the path taken between two
points by a ray of light is the path that can be traversed in
the least time. Historically, the proof of Fermat’s princi- (x, 0, )
ple by Johann Bernoulli was one of the first triumphs of o /
the calculus of variations, and served as a guiding princi- 0
ple in the formulation of physical laws using variational
calculus.

Consider the geometry shown in the figure, where
the light travels from the point Pi(0,y1,0) to the point Pz(xz"yz’o)
Py(x9,—y2,0). The light beam intersects a plane glass
interface at the point Q(x,0, z).

The French mathematician Fermat discovered that
the required path travelled by light is the path for which
the travel time t is a minimum. That is, the transit time from the initial point Py to the final point Py is

given by
2 2 2 2
1 1
t:/ dt:/ é:—/ nds:—/ n(x,y,2)\/1+ (@)° + () dy
1 1 v ¢ J1 ¢ J1

assuming that the velocity of light in any medium is given by v = c/n where n is the refractive index of the
medium and c is the velocity of light in vacuum.

0.

Light incident upon a plane glass interface in the
(x,y) plane at y = 0.
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This is a problem that has two dependent variables x(y) and z(y) with y chosen as the independent
variable. The integral can be broken into two parts y; — 0 and 0 — —ys.

[ T s [ o P )

The functionals are functions of =’ and 2’ but not x or z. Thus Euler’s equation for z simplifies to

d (1 nyz’ Noz
0+—(—( st — ,>)=0
dy \e V1i+a?+2?2 V1+a?+27
This implies that z' = 0, therefore z is a constant. Since the initial and final values were chosen to be
z1 = 29 = 0, therefore at the interface z = 0. Similarly Euler’s equations for x are

d (1 niz’ nax’ )
0+ (= + =0
dy (C(\/1+a¢'2+z’2 \/1+x’2+z'2)
But ' =tanfy for ny and ' = —tanfs for ny and it was shown that 2z’ = 0. Thus
d [1 tan 6 tan 6 d (1
O+d_ L n1 tan 04 B N9 tan 0o :d— (—(nlsinelngsinﬂg)) =0
y\° \/1+(tan01)2 \/1+(tan02)2 y ¢

Therefore %(nl sinf; — nysinfy) = constant which must be zero since when ny = ngy, then 61 = 3. Thus
Fermat’s principle leads to Snell’s Law.

n1sinf; = nq sin Oy

The geometry of this problem is simple enough to directly minimize the path rather than using Euler’s
equations for the two parameters as performed above. The lengths of the paths P1Q and QPs are

PQ = |22 +yP+ 22

QPQ = \/(xg —$)2+y§+22

The total transit time is given by

1
t=- <n11/x2—|—yf—|—z2+n2\/(x2—x)2—|—y§—|—z2>

This problem involves two dependent variables, y(x) and z(x). To find the minima, set the partial derivatives
% =0 and % =0. That is,

ot 1
_ niz + Nnoz ): 0

9 ¢ 2
IR M P

This is zero only if z =0, that is the point Q lies in the plane containing P, and P,. Similarly

1 — 1
o = —( e - na(w2 — ) )= —(nysinf; —ngsinfy) =0

or ¢ 21,21 2
N \/(ngx)QwLy%Jer

This is zero only if Snell’s law applies that is
1 sin 01 = N2 sin 02

Fermat’s principle has shown that the refracted light is given by Snell’s Law, and is in a plane normal to the
surface. The laws of reflection also are given since them n1 = no = n and the angle of reflection equals the
angle of incidence.
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5.6 Example: Minimum of (V¢)® in a volume

Find the function ¢(x1,xo,x3) that has the minimum value of (V¢)2 per unit volume. For the volume
V' it is desired to minimize the following

1= fostanan= ][ () () o

Note that the variables x1,xa, 3 are independent, and thus Euler’s equation for several independent variables
can be used. To minimize the functional J, the function

() @)@

must satisfy the Fuler equation

This is just Laplace’s equation
V3¢ =

Therefore ¢ must satisfy Laplace’s equation in order that the functional J be a minimum.

5.6 Euler’s integral equation

An integral form of the Euler differential equation can be written which is useful for cases when the function
f does not depend explicitly on the independent variable x, that is, when % = 0. Note that

oo ofdy  of df

de Oz Oydx Oy dx (5.20)
But d(,0f\ Ofdy ,dof
ay r & 9]

< oy’ > Oy dr Ty dz Oy’ (5.21)

Combining these two equations gives

d <y/§_j> _4 _of ,of 4 0f (5.22)

dc oz 7 oy Y ix a_y’
The last two terms can be rewritten as

d of Of
/
_—— = 2
/ (dw dy’ 3y) (5:2%)
which vanishes when the Euler equation is satisfied. Therefore the above equation simplifies to
of d , Of
- — 0 5.24
or dx (f ay’ ) (5.24)

This integral form of Euler’s equation is especially useful when % = 0, that is, when f does not depend

explicitly on the independent variable x. Then the first integral of equation 5.24 is a constant, i.e.
0
f- y’a—?ji = constant (5.25)

This is Euler’s integral variational equation. Note that the shortest distance between two points, the mini-
mum surface of rotation, and the brachistochrone, described earlier, all are examples where —i = 0 and thus
the integral form of Euler’s equation is useful for solving these cases.
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5.7 Constrained variational systems
Imposing a constraint on a variational system implies:

1. The N constrained coordinates y;(z) are correlated which violates
the assumption made in chapter 5.5 that the N variables are inde-
pendent.

2. Constrained motion implies that constraint forces must be acting
to account for the correlation of the variables. These constraint
forces must be taken into account in the equations of motion.

For example, for a disk rolling down an inclined plane without slip-

ping, there are three coordinates = [perpendicular to the wedge], y, [Along
the surface of the wedge], and the rotation angle  shown in figure 5.2.
The constraint forces, Fy N, lead to the correlation of the variables such
that * = R, while y = Rf. Basically there is only one independent
variable, which can be either y or 6. The use of only one independent
variable essentially buries the constraint forces under the rug, which is
fine if you only need to know the equation of motion. If you need to determine the forces of constraint then
it is necessary to include all coordinates explicitly in the equations of motion as discussed below.

Figure 5.2: A disk rolling down
an inclined plane.

5.7.1 Holonomic constraints

Most systems involve restrictions or constraints that couple the coordinates. For example, the y;(z) may
be confined to a surface in coordinate space. The constraints mean that the coordinates y;(z) are not inde-
pendent, but are related by equations of constraint. A constraint is called holonomic if the equations of
constraint can be expressed in the form of an algebraic equation that directly and unambiguously specifies
the shape of the surface of constraint. A non-holonomic constraint does not provide an algebraic relation
between the correlated coordinates. In addition to the holonomy of the constraints, the equations of con-
straint also can be grouped into the following three classifications depending on whether they are algebraic,
differential, or integral. These three classifications for the constraints exhibit different holonomy relating the
coupled coordinates. Fortunately the solution of constrained systems is greatly simplified if the equations of
constraint are holonomic.

5.7.2 Geometric (algebraic) equations of constraint

Geometric constraints can be expressed in the form of algebraic relations that directly specify the shape of
the surface of constraint in coordinate space q1,¢q2,..., ¢, --Gn-

gk(qlaQQa"qj,“qn;t) =0 (526)

where j = 1,2, 3,...n. There can be m such equations of constraint where 0 < k < m. An example of such a
geometric constraint is when the motion is confined to the surface of a sphere of radius R in coordinate space
which can be written in the form g = 22 + y? + 22 — R? = 0. Such algebraic constraint equations are called
Holonomic which allows use of generalized coordinates as well as Lagrange multipliers to handle both the
constraint forces and the correlation of the coordinates.

5.7.3 Kinematic (differential) equations of constraint

The m constraint equations also can be expressed in terms of the infinitessimal displacements of the form

-~ 09

09
—dt =0 5.27
e (5.27)

daj + g =

Jj=1

where k = 1,2,3,..m, j = 1,2,3,...n. If equation (5.27) represents the total differential of a function then
it can be integrated to give a holonomic relation of the form of equation 5.26. However, if equation 5.27 is
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not the total differential, then it is non-holonomic and can be integrated only after having solved the full
problem.

An example of differential constraint equations is for a wheel rolling on a plane without slipping which is
non-holonomic and more complicated than might be expected. The wheel moving on a plane has five degrees
of freedom since the height z is fixed. That is, the motion of the center of mass requires two coordinates
(z,y) plus there are three angles (¢, 0, ) where ¢ is the rotation angle for the wheel, 6 is the pivot angle of
the axis, and 1 is the tilt angle of the wheel. If the wheel slides then all five degrees of freedom are active.
If the axis of rotation of the wheel is horizontal, that is, the tilt angle 1) = 0 is constant, then this kinematic
system leads to three differential constraint equations The wheel can roll with angular velocity ¢, as well as
pivot which corresponds to a change in . Combining these leads to two differential equations of constraint

dr —asinfd¢ =0 dy + acosfdp =0 (5.28)

These constraints are insufficient to provide finite relations between all the coordinates. That is, the con-
straints cannot be reduced by integration to the form of equation 5.26 because there is no functional relation
between ¢ and the other three variables, x, y, 8. Many rolling trajectories are possible between any two points
of contact on the plane that are related to different pivot angles. That is, the point of contact of the disk
could pivot plus roll in a circle returning to the same point where z,y, 0 are unchanged whereas the value
of ¢ depends on the circumference of the circle. As a consequence the rolling constraint is non-holonomic
except for the case where the disk rolls in a straight line and remains vertical.

5.7.4 Isoperimetric (integral) equations of constraint

Equations of constraint also can be expressed in terms of direct integrals. This situation is encountered for
isoperimetric problems, such as finding the maximum volume bounded by a surface of fixed area, or the
shape of a hanging rope of fixed length. Integral constraints occur in economics when minimizing some cost
algorithm subject to a fixed total cost constraint.

A simple example of an isoperimetric problem involves finding the curve y = y(z) such that the functional
has an extremum where the curve y(z) satisfies boundary conditions such that y(z1) = a and y(z2) = b,
that is

F(y) = /12 fy,y's2)da (5.29)

is an extremum such that the perimeter also is constrained to satisfy

Zo
G(y) = / 9(y,y")dw =1 (5.30)
x1
where [ is a fixed length. This integral constraint is geometric and holonomic. Another example is finding
the minimum surface area of a closed surface subject to the enclosed volume being the constraint.

5.7.5 Properties of the constraint equations

Holonomic constraints Geometric constraints can be expressed in the form of an algebraic equation
that directly specifies the shape of the surface of constraint

g(y15y27y3a"';$) =0 (531)

Such a system is called holonomic since there is a direct relation between the coupled variables. An example
of such a holonomic geometric constraint is if the motion is confined to the surface of a sphere of radius R
which can be written in the form

g=2"+y*+22-R*=0 (5.32)

Non-holonomic constraints There are many classifications of non-holonomic constraints that exist
if equation (5.31) is not satisfied. The algebraic approach is difficult to handle when the constraint is an
inequality, such as the requirement that the location is restricted to lie inside a spherical shell of radius R
which can be expressed as

g=2*+y* +22 - R*<0 (5.33)



116 CHAPTER 5. CALCULUS OF VARIATIONS

This non-holonomic constrained system has a one-sided constraint. Systems usually are non-holonomic if
the constraint is kinematic as discussed above.

Partial Holonomic constraints Partial-holonomic constraints are holonomic for a restricted range
of the constraint surface in coordinate space, and this range can be case specific. This can occur if the
constraint force is one-sided and perpendicular to the path. An example is the pendulum with the mass
attached to the fulcrum by a flexible string that provides tension but not compression. Then the pendulum
length is constant only if the tension in the string is positive. Thus the pendulum will be holonomic if
the gravitational plus centrifugal forces are such that the tension in the string is positive, but the system
becomes non-hononomic if the tension is negative as can happen when the pendulum rotates to an upright
angle where the centrifugal force outwards is insufficient to compensate for the vertical downward component
of the gravitational force. There are many other examples where the motion of an object is holonomic when
the object is pressed against the constraint surface, such as the surface of the Earth, but is unconstrained if
the object leaves the surface.

Time dependence

A constraint is called scleronomic if the constraint is not explicitly time dependent. This ignores the time
dependence contained within the solution of the equations of motion. Fortunately a major fraction of
systems are scleronomic. The constraint is called rheonomic if the constraint is explicitly time dependent.
An example of a rheonomic system is where the size or shape of the surface of constraint is explicitly time
dependent such as a deflating pneumatic tire.

Energy conservation

The solution depends on whether the constraint is conservative or dissipative, that is, if friction or drag are
acting. The system will be conservative if there are no drag forces, and the constraint forces are perpendicular
to the trajectory of the path such as the motion of a charged particle in a magnetic field. Forces of constraint
can result from sliding of two solid surfaces, rolling of solid objects, fluid flow in a liquid or gas, or result from
electromagnetic forces. Energy dissipation can result from friction, drag in a fluid or gas, or finite resistance
of electric conductors leading to dissipation of induced electric currents in a conductor, e.g. eddy currents.

A rolling constraint is unusual in that friction between the rolling bodies is necessary to maintain rolling.
A disk on a frictionless inclined plane will conserve it’s angular momentum since there is no torque acting
if the rolling contact is frictionless, that is, the disk will just slide. If the friction is sufficient to stop sliding,
then the bodies will roll and not slide. A perfect rolling body does not dissipate energy since no work is
done at the instantaneous point of contact where both bodies are in zero relative motion and the force is
perpendicular to the motion. In real life, a rolling wheel can involve a very small energy dissipation due to
deformation at the point of contact coupled with non-elastic properties of the material used to make the
wheel and the plane surface. For example, a pneumatic tire can heat up and expand due to flexing of the
tire.

5.7.6 Treatment of constraint forces in variational calculus

There are three major approaches to handle constraint forces in variational calculus. All three of them exploit
the tremendous freedom and flexibility available when using generalized coordinates. The (1) generalized
coordinate approach, described in chapter 5.8, exploits the correlation of the n coordinates due to the m
constraint forces to reduce the dimension of the equations of motion to s = n — m degrees of freedom. This
approach embeds the m constraint forces, into the choice of generalized coordinates and does not determine
the constraint forces, (2) Lagrange multiplier approach, described in chapter 5.9, exploits generalized
coordinates but includes the m constraint forces into the Euler equations to determine both the constraint
forces in addition to the n equations of motion. (3) Generalized forces approach, described in chapter
6.7.3, introduces constraint and other forces explicitly.
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5.8 Generalized coordinates in variational calculus

Newtonian mechanics is based on a vectorial treatment of mechanics which can be difficult to apply when
solving complicated problems in mechanics. Constraint forces acting on a system usually are unknown. In
Newtonian mechanics constrained forces must be included explicitly so that they can be determined simul-
taneously with the solution of the dynamical equations of motion. The major advantage of the variational
approaches is that solution of the dynamical equations of motion can be simplified by expressing the motion
in terms of n independent generalized coordinates. These generalized coordinates can be any set of in-
dependent variables, ¢;, where 1 < ¢ < n, plus the corresponding velocities ¢; for Lagrangian mechanics,
or the corresponding canonical variables, ¢;, p; for Hamiltonian mechanics. These generalized coordinates for
the n variables are used to specify the scalar functional dependence on these generalized coordinates. The
variational approach employs this scalar functional to determine the trajectory. The generalized coordinates
used for the variational approach do not need to be orthogonal, they only need to be independent since they
are used only to completely specify the magnitude of the scalar functional. This greatly expands the arse-
nal of possible generalized coordinates beyond what is available using Newtonian mechanics. For example,
generalized coordinates can be the dimensionless amplitudes for the n normal modes of coupled oscillator
systems, or action-angle variables. In addition, generalized coordinates having different dimensions can be
used for each of the n variables. Each generalized coordinate, q; specifies an independent mode of the system,
not a specific particle. For example, each normal mode of coupled oscillators can involve correlated motion of
several coupled particles. The major advantage of using generalized coordinates is that they can be chosen
to be perpendicular to a corresponding constraint force, and therefore that specific constraint force does no
work for motion along that generalized coordinate. Moreover, the constrained motion does no work in the
direction of the constraint force for rigid constraints. Thus generalized coordinates allow specific constraint
forces to be ignored in evaluation of the minimized functional. This freedom and flexibility of choice of gen-
eralized coordinates allows the correlated motion produced by the constraint forces to be embedded directly
into the choice of the independent generalized coordinates, and the actual constraint forces can be ignored.
Embedding of the constraint induced correlations into the generalized coordinates, effectively “sweeps the
constraint forces under the rug” which greatly simplifies the equations of motion for any system that in-
volve constraint forces. Selection of the appropriate generalized coordinates can be obvious, and often it is
performed subconsciously by the user.

Three variational approaches are used that employ generalized coordinates to derive the equations of
motion of a system that has n generalized coordinates subject to m constraints.

1) Minimal set of generalized coordinates: When the m equations of constraint are holonomic, then
the m algebraic constraint relations can be used to transform the coordinates into s = n — m independent
generalized coordinates q;. This approach reduces the number of unknowns, n, by the number of constraints
m, to give a minimal set of s = n —m independent generalized dynamical variables. The forces of constraint
are not explicitly discussed, or determined, when this generalized coordinate approach is employed. This
approach greatly simplifies solution of dynamical problems by avoiding the need for explicit treatment of the
constraint forces. This approach is straight forward for holonomic constraints, since the n spatial coordinates
y1(2),..yn(x), are coupled by m algebraic equations which can be used to make the transformation to
generalized coordinates. Thus the n coupled spatial coordinates are transformed to s = n — m independent
generalized dynamical coordinates ¢, (), ....qs(x), and their generalized first derivatives ¢ (z), ....¢s(x). These
generalized coordinates are independent, and thus it is possible to use Euler’s equation for each independent
parameter g;

af daf
i 0 (5.34)

where ¢ = 1,2, 3..s. There are s = n—m such Euler equations. The freedom to choose generalized coordinates
underlies the tremendous advantage of applying the variational approach.

2) Lagrange multipliers: The n Lagrange equations, plus the m equations of constraint, can be used
to explicitly determine the n generalized coordinates plus the m constraint forces. That is, n +m unknowns
are determined. This approach is discussed in chapter 5.9.

3) Generalized forces: This approach introduces the constraint forces explicity. This approach, applied
to Lagrangian mechanics, is discussed in chapter 6.6.3.

The above three approaches exploit generalized coordinates to handle constraint forces as described in
chapter 6.
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5.9 Lagrange multipliers for holonomic constraints

5.9.1 Algebraic equations of constraint

The Lagrange multiplier technique provides a powerful, and elegant, way to handle holonomic constraints
using Euler’s equations!. The general method of Lagrange multipliers for n variables, with m constraints,
is best introduced using Bernoulli’s ingenious exploitation of virtual infinitessimal displacements, which
Lagrange signified by the symbol §. The term “virtual” refers to an intentional variation of the generalized
coordinates d¢; in order to elucidate the local sensitivity of a function F(g;, ) to variation of the variable.
Contrary to the usual infinitessimal interval in differential calculus, where an actual displacement dg; occurs
during a time dt, a virtual displacement is imagined to be an instantaneous, infinitessimal, displacement of
a coordinate, not an actual displacement, in order to elucidate the local dependence of F' on the coordinate.
The local dependence of any functional F, to virtual displacements of all n coordinates, is given by taking
the partial differentials of F.
"~ OF

OF = —
P 0q;

0q; (5.35)
The function F' is stationary, that is an extremum, if equation 5.35 equals zero. The extremum of the
functional F', given by equation 5.16, can be expressed in a compact form using the virtual displacement
formalism as

xTo n n 8F
SF = 6/$1 Zz:f[ql(ac)q;(aj),x] dr = i 3_(12-5% =0 (5.36)

The auxiliary conditions, due to the m holonomic algebraic constraints for the n variables g;, can be
expressed by the m equations

gx(q) =0 (5.37)

where 1 < k < m and 1 < i < n with m < n. The variational problem for the m holonomic constraint
equations also can be written in terms of m differential equations where 1 <k <m

n

ogr, = 0g; =0 (5.38)

99k
= 94

Since equations 5.36 and 5.38 both equal zero, the m equations 5.38 can be multiplied by arbitrary
undetermined factors A\, and added to equations 5.36 to give.

OF (i, ) + A10g1 + A20g2 - -Ak0gk - - Am0gm =0 (5.39)

Note that this is not trivial in that although the sum of the constraint equations for each y; is zero; the
individual terms of the sum are not zero.
Insert equations 5.36 plus 5.38 into 5.39, and collect all n terms, gives

- oF - 8gk
—+> A
;(aqi kZ * g

=1

) 5g; =0 (5.40)

Note that all the dq; are free independent variations and thus the terms in the brackets, which are the
coefficients of each d¢;, individually must equal zero. For each of the n values of i, the corresponding bracket
implies

OF i ng
+ A =0 5.41
dq; kzzl " aq; (5.41)

This is equivalent to what would be obtained from the variational principle

SF +> Mgk =0 (5.42)
k=1

IThis textbook uses the symbol g; to designate a generalized coordinate, and q} to designate the corresponding first derivative
with respect to the independent variable, in order to differentiate the spatial coordinates from the more powerful generalized
coordinates.
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Equation 5.42 is equivalent to a variational problem for finding the stationary value of F’

6(F’) =0 (F + i)\kgk> =0 (5.43)
k

where F" is defined to be

m

F' = (F +y )\kgk> (5.44)
k=1

The solution to equation 5.43 can be found using Euler’s differential equation 5.19 of variational calculus.

At the extremum ¢ (F’) = 0 corresponds to following contours of constant F” which are in the surface that is

perpendicular to the gradients of the terms in F’. The Lagrange multiplier constants are required because,

although these gradients are parallel at the extremum, the magnitudes of the gradients are not equal.

The beauty of the Lagrange multipliers approach is that the auxiliary conditions do not have to be
handled explicitly, since they are handled automatically as m additional free variables during solution of
Euler’s equations for a variational problem with n 4+ m unknowns fit to n + m equations. That is, the n
variables q; are determined by the variational procedure using the n variational equations

d OF OF' d OF OF . <~ . Ogu
()= —(=—) = (=) = A =0 5.45
d:c(aqg) (aqz_ dx(aqg) (8%) > A (5.45)
simultaneously with the m variables \; which are determined by the m variational equations

A OF _ OF
dz 0N, ‘O

)=0 (5.46)
Equation 5.45 usually is expressed as

OF . d OF <~ . Og
(8%)—%(8—%)4';/\198%

=0 (5.47)

The elegance of Lagrange multipliers is that a single variational approach allows simultaneous determination
of all n+m unknowns. Chapter 6.2 shows that the forces of constraint are given directly by the Ak%%’: terms.

5.7 Example: Two dependent variables coupled by one holonomic constraint

The powerful, and generally applicable, Lagrange multiplier technique is illustrated by considering the case
of only two dependent variables, y(z), and z (z), with the function f(y(z),y (x),z(x), z(x);x) and with one
holonomic equation of constraint coupling these two dependent variables. The extremum is given by requiring

oF (™ [[/of d of\ oy of d of\ 0z B
oe /£1 [(81/ dx 8y’> Oe * 0z dx 02" ) Oe do =0 (4)
with the constraint expressed by the auziliary condition
9y, z2)=0 (B)

Note that the variations % and % are no longer independent because of the constraint equation, thus the

the two terms in the brackets of equation A are mot separately equal to zero at the extremum. However,
differentiating the constraint equation B gives

dg Ogdy 0g 0z
o (2L 222 C
de <8y Oe +8z Oe ©)
No %% term applies because, for the independent variable, % = 0. Introduce the neighboring paths by adding
the auziliary functions

yle ) = yla) +en(z) (D)
2ex) = z(x) +eny(x) (E)



120 CHAPTER 5. CALCULUS OF VARIATIONS

Insert the differentials of equations D and E, into C gives

dg _ (9g dg _
% = (G + Em@) =0 ()
implying that )
9og
ny(x) = =G ()
0z

Equation A can be rewritten as

=rraf  dd of dd
[ NG~ g )i (52 - dmaw) o] e =«

w[rof  d of af dof\ L
/. [(a—y‘aa—y/)‘(&‘%@ E] miede =0 @

Equation G now contains only a single arbitrary function n,(x) that is not restricted by the constraint. Thus
the bracket in the integrand of equation G must equal zero for the extremum. That is

of 4 ofy (a9\™_ (20 _dory(os\_
Oy dx oy Oy \ 0z  dx 0% 0z o *
Now the left-hand side of this equation is only a function of f and g with respect to y and y' while the

right-hand side is a function of [ and g with respect to z and z'. Because both sides are functions of x then
each side can be set equal to a function —\(x). Thus the above equations can be wrilten as

dof _9f _\ 9 dof _of _, 0

L9 Y A H
dz Oy’ Oy (z) dy dx 0z' 0z (@) 0z (H)

The complete solution of the three unknown functions. y(zx),z(x), and \(x). is obtained by solving the two
equations, H, plus the equation of constraint F. The Lagrange multiplier A\(x) is related to the force of
constraint. This example of two variables coupled by one holonomic constraint conforms with the gemeral
relation for many variables and constraints given by equation 5.47.

5.9.2 Integral equations of constraint

The constraint equation also can be given in an integral form which is used frequently for isoperimetric
problems. Consider a one dependent-variable isoperimetric problem, for finding the curve ¢ = g(z) such that
the functional has an extremum, and the curve g(x) satisfies boundary conditions such that ¢(x;) = a and
q(z2) = b. That is

F(y) = / - fla,q;2)dx (5.48)

is an extremum such that the fixed length [ of the perimeter satisfies the integral constraint
T2
G(y) = / 9(¢,¢";x)dz =1 (5.49)
x1

Analogous to (5.44) these two functionals can be combined requiring that
SK(q,z,\) =0 [F(q) + \G(q)] = 5/ [f 4+ Agldz =0 (5.50)

That is, it is an extremum for both ¢(z) and the Lagrange multiplier A. This effectively involves finding the
extremum path for the function K(q,x,\) = F(q, ) + AG(q, z) where both ¢(z) and X are the minimized
variables. Therefore the curve ¢(x) must satisfy the differential equation

d of 8f+>\[d dg 89]:0

dx 0q,  Og;

dx 0q,  0¢;

(5.51)
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subject to the boundary conditions ¢(z1) = a, q(z2) = b, and G(q) = L.

5.8 Example: Catenary

One isoperimetric problem is the catenary which is the shape a uniform rope or chain of fixed length [
that minimizes the gravitational potential energy. Let the rope have a uniform mass per unit length of o

kg/m.
The gravitational potential enerqgy is

2 2 2
U:Ug/ yds:ag/ y\/ dz? + dy? :Ug/ yv 1+ y?%dx \ /
1 1 1

The constraint is that the length be a constant [

2 2
l:/ ds:/ V1+y2dx
1 1

Thus the function is f(y,y’;x) = y/1+ y'? while the integral con-
straint sets g = /1 + y'2
These need to be inserted into the Euler equation (5.51) by defining

A B,
_ _ / 2
F=f+XA=Hy+N)V1+y The catenary

Note that this case is one where g—i = 0 and X is a constant; also

defining z = y + X then 2’ =y'. Therefore the Euler’s equations can be written in the integral form

oF
F — 27— = ¢ = constant

oz’
Inserting the relation F = z+/1 + 2/2 gives

2z
21422 - =¢
V14272

where ¢ is an arbitrary constant. This simplifies to

The integral of this is

b
z = ccosh (i)
c

where b and ¢ are arbitrary constants fized by the locations of the two fized ends of the rope.

5.9 Example: The Queen Dido problem

A famous constrained isoperimetric legend is that of Dido, first Queen of Carthage. Legend says that,
when Dido landed in North Africa, she persuaded the local chief to sell her as much land as an oxhide could
contain. She cut an oxhide into narrow strips and joined them to make a continuous thread more than four
kilometers in length which was sufficient to enclose the land adjoining the coast on which Carthage was built.
Her problem was to enclose the mazimum area for a given perimeter. Let us assume that the coast line is
straight and the ends of the thread are at +a on the coast line. The enclosed area is given by

+a
A= / ydx

The constraint equation is that the total perimeter equals .

/ V1+y2de =1
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0, 9
Thus we have that the functional f(y,y’,x) =y and g(y,y’,x) = /1 +y'2. Then 6—5 =1, aJ, =0,
and —*’L = Insert these into the Fuler-Lagrange equation (5.51) gives
T (5.51)

SIS

< [Q
I

o

a2 v |-
dx /1 4 y/2
That is
d y 1
d A/1 —+ y’2 n A
Integrate with respect to x gives
Ay’ b

Vi

where b is a constant of integration. This can be rearranged to give
) = +(x —b)
22— (z—b)?

y=F\/N —(z—b’+c

(x—b)*+(y—o’ =N

This is the equation of a circle centered at (b,c). Setting the bounds to be (—a,0) to (a,0) gives that
b= c =0 and the circle radius is \. Thus the length of the thread must be | = w\. Assuming that | = 4km
then A = 1.27km and Queen Dido could buy an area of 2.53km?2.

The integral of this is

Rearranging this gives

5.10 Geodesic

The geodesic is defined as the shortest path between two fixed points for motion that is constrained to lie
on a surface. Variational calculus provides a powerful approach for determining the equations of motion
constrained to follow a geodesic.

The use of variational calculus is illustrated by considering the geodesic constrained to follow the surface
of a sphere of radius R. As discussed in appendix C.2.3, the element of path length on the surface of the

sphere is given in spherical coordinates as ds = R\/dﬂ2 + (sin 9d¢)2. Therefore the distance s between two

points 1 and 2 is
2 g\ >
s:R/ ( ) +sin? 0| d¢ 5.52
: a5 (5.52)

The function f for ensuring that s be an extremum value uses
0" + sin® 0 (5.53)

where ' = j—e. This is a case where g—g = 0 and thus the integral form of Euler’s equation can be used
leading to the result that

V0" 4 sin? 0 — 0'% V0" +sin? § = constant = a (5.54)

This gives that

sin? 0 = aV0* + sin? 0 (5.55)

1 20
do 1_ acsc (5.56)

A0 JT-atesc20

This can be rewritten as
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Solving for ¢ gives

t 0
¢ = sin~! (CO > ta (5.57)
B
where )
1-a
8= e (5.58)
That is
cotf = Bsin (¢ — a) (5.59)
Expanding the sine and cotangent gives
(Bcosa) Rsinfsing — (fsina) Rsinf cos ¢ = R cos b (5.60)

Since the brackets are constants, this can be written as
A(Rsinfsin¢) — B (Rsin6 cos ¢) = (Rcos0) (5.61)
The terms in the brackets are just expressions for the rectangular coordinates z,y, z. That is,
Ay—Bx =z (5.62)

This is the equation of a plane passing through the center of the sphere. Thus the geodesic on a sphere
is the path where a plane through the center intersects the sphere as well as the initial and final locations.
This geodesic is called a great circle. Euler’s equation gives both the maximum and minimum extremum
path lengths for motion on this great circle.

Chapter 17 discusses the geodesic in the four-dimensional space-time coordinates that underlie the General
Theory of Relativity. As a consequence, the use of the calculus of variations to determine the equations of
motion for geodesics plays a pivotal role in the General Theory of Relativity.

5.11 Variational approach to classical mechanics

This chapter has introduced the general principles of variational calculus needed for understanding the La-
grangian and Hamiltonian approaches to classical mechanics. Although variational calculus was developed
originally for classical mechanics, now it has grown to be an important branch of mathematics with applica-
tions to many other fields outside of physics. The prologue of this book emphasized the dramatic differences
between the differential vectorial approach of Newtonian mechanics, and the integral variational approaches
of Lagrange and Hamiltonian mechanics. The Newtonian vectorial approach involves solving Newton’s dif-
ferential equations of motion that relate the force and momenta vectors. This requires knowledge of the
time dependence of all the force vectors, including constraint forces, acting on the system which can be very
complicated. Chapter 2 showed that the first-order time integrals, equations 2.10, 2.16, relate the initial and
final total momenta without requiring knowledge of the complicated instantaneous forces acting during the
collision of two bodies. Similarly, for conservative systems, the first-order spatial integral, equation 2.21,
relates the initial and final total energies to the net work done on the system without requiring knowledge
of the instantaneous force vectors. The first-order spatial integral has the advantage that it is a scalar quan-
tity, in contrast to time integrals which are vector quantities. These first-order integral relations are used
frequently in Newtonian mechanics to derive solutions of the equations of motion that avoid having to solve
complicated differential equations of motion.

This chapter has illustrated that variational principles provide a means of deriving more detailed infor-
mation, such as the trajectories for the motion between given initial and final conditions, by requiring that
scalar functionals have extrema values. For example, the solution of the brachistochrone problem determined
the trajectory having the minimum transit time, based on only the magnitudes of the kinetic and gravita-
tional potential energies. Similarly, the catenary shape of a suspended chain was derived by minimizing the
gravitational potential energy. The calculus of variations uses Euler’s equations to determine directly the
differential equations of motion of the system that lead to the functional of interest being stationary at an
extremum. The Lagrangian and Hamiltonian variational approaches to classical mechanics are discussed
in chapters 6 — 16. The broad range of applicability, the flexibility, and the power provided by variational
approaches to classical mechanics and modern physics will be illustrated.
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5.12 Summary

Euler’s differential equation: The calculus of variations has been introduced and Euler’s differential
equation was derived. The calculus of variations reduces to varying the functions y;(z), where ¢ = 1,2, 3, ...n,
such that the integral

F= [ 1) via)ialao (5.16)

is an extremum, that is, it is a maximum or minimum. Here x is the independent variable, y;(z) are
the dependent variables plus their first derivatives y, = Cﬁfﬁ. The quantity f[y(z),y(z);z] has some given
dependence on y;,y; and . The calculus of variations involves varying the functions y;(x) until a stationary
value of F' is found which is presumed to be an extremum. It was shown that if the y;(z) are independent,
then the extremum value of F' leads to n independent Euler equations

af d of

_ 2 1
oy dwoy] " (519)

where ¢ = 1,2, 3..n. This can be used to determine the functional form y;(x) that ensures that the integral
F= f;lz fly(x),y' (x); 2] dz is a stationary value, that is, presumably a maximum or minimum value.

Note that Euler’s equation involves partial derivatives for the dependent variables y;,y., and the total
derivative for the independent variable x.

Euler’s integral equation: It was shown that if the function f;lz £ lyi(z),y}(z); 2] does not depend on
the independent variable, then Euler’s differential equation can be written in an integral form. This integral
form of Euler’s equation is especially useful when %ﬂé = 0, that is, when f does not depend explicitly on x,
then the first integral of the Euler equation is a constant

f- y’g—?j = constant (5.25)

Constrained variational systems: Most applications involve constraints on the motion. The equations
of constraint can be classified according to whether the constraints are holonomic or non-holonomic, the time
dependence of the constraints, and whether the constraint forces are conservative.

Generalized coordinates in variational calculus: Independent generalized coordinates can be chosen
that are perpendicular to the rigid constraint forces and therefore the constraint does not contribute to the
functional being minimized. That is, the constraints are embedded into the generalized coordinates and thus
the constraints can be ignored when deriving the variational solution.

Minimal set of generalized coordinates: If the constraints are holonomic then the m holonomic
equations of constraint can be used to transform the n coupled generalized coordinates to s = n —m
independent generalized variables g;, g,. The generalized coordinate method then uses Euler’s equations to
determine these s = n — m independent generalized coordinates.

9f _ dof =0 (5.35)
0¢; dz 0,

Lagrange multipliers for holonomic constraints: The Lagrange multipliers approach for n variables,
plus m holonomic equations of constraint, determines all N + m unknowns for the system. The holonomic
forces of constraint acting on the NN variables, are related to the Lagrange multiplier terms Ak(x)%’f that
are introduced into the Euler equations. That is,

of  d of & Ogr
_ = 4
oy Toy g Ak () 3y =" (5.48)

where the holonomic equations of constraint are given by

g (yi;z) =0 (5.38)

The advantage of using the Lagrange multiplier approach is that the variational procedure simultaneously
determines both the equations of motion for the N variables plus the m constraint forces acting on the
system.



Chapter 6

Lagrangian dynamics

6.1 Introduction

Newtonian mechanics is based on vector observables such as momentum and force, and Newton’s equations
of motion can be derived if the forces are known. Newtonian mechanics becomes difficult to apply for many-
body systems that involve constraint forces. The alternative algebraic Lagrangian mechanics approach is
based on the concept of scalar energies which circumvent many of the difficulties in handling constraint forces
and many-body systems.

The Lagrangian approach to classical dynamics is based on the calculus of variations introduced in chapter
5. It was shown that the calculus of variations determines the function y;(x) such that the scalar functional

r- [ U3l )i de (6.1)

is an extremum, that is, a maximum or minimum. Here z is the independent variable, y;(x) are the n
dependent variables, and their derivatives y; = Cffg, where ¢ = 1,2, 3,..n. The function f [y;(z),y}(x);x] has
an assumed dependence on y;,y; and x. The calculus of variations determines the functional dependence
of the dependent variables y;(z), on the independent variable z, that is needed to ensure that F' is an
extremum. For n independent variables, F' has a stationary point, which is presumed to be an extremum,

that is determined by solution of Euler’s differential equations

dof _of _,

dz 0y,  Oy;

(6.2)

If the coordinates y;(x) are independent, then the Euler equations, (6.2), for each coordinate i are inde-
pendent. However, for constrained motion, the constraints lead to auxiliary conditions that correlate the
coordinates. As shown in chapter 5, a transformation to independent generalized coordinates can be made
such that the correlations induced by the constraint forces are embedded into the choice of the independent
generalized coordinates. The use of generalized coordinates in Lagrangian mechanics simplifies derivation of
the equations of motion for constrained systems. For example, for a system of n coordinates, that involves
m holonomic constraints, there are s = n — m independent generalized coordinates. For such holonomic
constrained motion, it will be shown that the Euler equations can be solved using either of the following
three alternative ways.

1) The minimal set of generalized coordinates approach involves finding a set of s = n—m indepen-
dent generalized coordinates g; that satisfy the assumptions underlying (6.2). These generalized coordinates
can be determined if the m equations of constraint are holonomic, that is, related by algebraic equations of
constraint

9r(gi; ) =0 (6.3)

where k = 1,2, 3, ....m. These equations uniquely determine the relationship between the n correlated coordi-
nates. This method has the advantage that it reduces the system of n coordinates, subject to m constraints,
to s = n —m independent generalized coordinates which reduces the dimension of the problem to be solved.
However, it does not explicitly determine the forces of constraint which are effectively swept under the rug.
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2) The Lagrange multipliers approach takes account of the correlation between the n coordinates and
m holonomic constraints by introducing the Lagrange multipliers A;(z). These n generalized coordinates g;
are correlated by the m holonomic constraints.

dof of & 9gs

where ¢ = 1,2, 3, ...n. The Lagrange multiplier approach has the advantage that Euler’s calculus of variations
automatically use the n Lagrange equations, plus the m equations of constraint, to explicitly determine both
the n coordinates ¢; and the m forces of constraint which are related to the Lagrange multipliers A as given
in equation (6.4). Chapter 6.2 shows that the Y " A, () g—g’j terms are directly related to the holonomic
forces of constraint.

3) The generalized force approach incorporates the forces of constraint explicitly as will be shown in
chapter 6.5.4. Incorporating the constraint forces explicitly allows use of holonomic, non-holonomic, and
non-conservative constraint forces.

Understanding the Lagrange formulation of classical mechanics is facilitated by use of a simple non-
rigorous plausibility approach that is based on Newton’s laws of motion. This introductory plausibility ap-
proach will be followed by two more rigorous derivations of the Lagrangian formulation developed using either
d’Alembert Principle or Hamiltons Principle. These better elucidate the physics underlying the Lagrange
and Hamiltonian analytic representations of classical mechanics. In 1788 Lagrange derived his equations of
motion using the differential d’Alembert Principle, that extends to dynamical systems the Bernoulli Principle
of infinitessimal virtual displacements and virtual work. The other approach, developed in 1834, uses the
integral Hamilton’s Principle to derive the Lagrange equations. Hamilton’s Principle is discussed in more
detail in chapter 9. Euler’s variational calculus underlies d’Alembert’s Principle and Hamilton’s Principle
since both are based on the philosophical belief that the laws of nature prefer economy of motion. Chap-
ters 6.2 — 6.5 show that both d’Alembert’s Principle and Hamilton’s Principle lead to the Euler-Lagrange
equations. This will be followed by a series of examples that illustrate the use of Lagrangian mechanics in
classical mechanics.

6.2 Newtonian plausibility argument for Lagrangian mechanics

Insight into the physics underlying Lagrange mechanics is given by showing the direct relationship between
Newtonian and Lagrangian mechanics. The variational approaches to classical mechanics exploit the first-
order spatial integral of the force, equation 2.17, which equals the work done between the initial and final
conditions. The work done is a simple scalar quantity that depends on the initial and final locations for
conservative forces. Newton’s equation of motion is

dp
F=— 6.5
o (6.5)
The kinetic energy is given by
1 pp_p2 P D
2" = o T om  2m ' 2m
It can be seen that o7
g° 6.6
0 Dz ( )
and 40T d
Dax
— = = =F, 6.7
dt 0% dt (6.7)

Consider that the force, acting on a mass m, is arbitrarily separated into two components, one part that
is conservative, and thus can be written as the gradient of a scalar potential U, plus the excluded part of
the force, FPX. The excluded part of the force FFX could include non-conservative frictional forces as well
as forces of constraint which may be conservative or non-conservative. This separation allows the force to
be written as

F=-VU+4FFX (6.8)
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Along each of the x; axes,
dor  oU

Equation (6.9) can be extended by transforming the cartesian coordinate x; to the generalized coordinates
qi-

Define the standard Lagrangian to be the difference between the kinetic energy and the potential energy,
which can be written in terms of the generalized coordinates g; as

L(gi, 4i) = T(¢:) — Ul(a:) (6.10)

Assume that the potential is only a function of the generalized coordinates g;, that is g—g =0, then

+ FEX (6.9)

OL 9T  oU _ oT

= _ - 6.11
¢ 0¢  0q;  04; (6.11)
Using the above equations allows Newton’s equation of motion (6.9) to be expressed as
d OL L
0 OL _ prex (6.12)

#og,  og

The excluded force F, q‘?X can be partitioned into a holonomic constraint force F, q? ¢ plus any remaining

excluded forces FEXC  as given by
fo _ ch 4 pEXC (6.13)

A comparison of equations (6.12,6.13) and (6.4) shows that the holonomic constraint forces F, qil C that are
contained in the excluded force F¥X, can be identified with the Lagrange multiplier term in equation 6.4.

- g
HC _
Fqi = Ek Ak (1) 94: (6.14)

That is the Lagrange multiplier terms can be used to account for holonomic constraint forces F(f C. Thus
equation 6.12 can be written as

_—— = A (1) =— + F 6.15
dt0¢; 0Og zk: £ ®) 0¢; T (6.15)

where the Lagrange multiplier term accounts for holonomic constraint forces, and Fqb;X ¢ includes all the
remaining forces that are not accounted for by the scalar potential U, or the Lagrange multiplier terms F, ;f .

For holonomic, conservative forces it is possible to absorb all the forces into the potential U plus the
Lagrange multiplier term, that is Fle ¢ = (. Moreover, the use of a minimal set of generalized coordinates
allows the holonomic constraint forces to be ignored by explicitly reducing the number of coordinates from
n dependent coordinates to s = n — m independent generalized coordinates. That is, the correlations due
to the constraint forces are embedded into the generalized coordinates. Then equation 6.15 reduces to the

basic Euler differential equations.
d oL 0L

dtdg g
Note that equation 6.16 is identical to Euler’s equation 5.34, if the independent variable x is reglaced

by time ¢. Thus Newton’s equation of motion are equivalent to minimizing the action integral S = ftf Ldt,
that is

(6.16)

ta
t1

which is Hamilton’s Principle. Hamilton’s Principle underlies many aspects of physics, as discussed in chapter
9, and is used as the starting point for developing classical mechanics. Hamilton’s Principle was postulated
46 years after Lagrange introduced Lagrangian mechanics.

The above plausibility argument, which is based on Newtonian mechanics, illustrates the close connection
between the vectorial Newtonian mechanics and the algebraic Lagrangian mechanics approaches to classical
mechanics.
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6.3 Lagrange equations from d’Alembert’s Principle

6.3.1 d’Alembert’s Principle of Virtual Work

The Principle of Virtual Work provides a basis for a rigorous derivation of Lagrangian mechanics. Bernoulli
introduced the concept of virtual infinitessimal displacement of a system mentioned in chapter 5.9.1. This
refers to a change in the configuration of the system as a result of any arbitrary infinitessimal instantaneous
change of the coordinates dr;, that is consistent with the forces and constraints imposed on the system at
the instant ¢. Lagrange’s symbol § is used to designate a virtual displacement which is called “virtual” to
imply that there is no change in time ¢, i.e. 6t = 0. This distinguishes it from an actual displacement dr; of
body ¢ during a time interval dt when the forces and constraints may change.

Suppose that the system of n particles is in equilibrium, that is, the total force on each particle i is
zero. The virtual work done by the force F; moving a distance dr; is given by the dot product F; - ér;. For
equilibrium, the sum of all these products for the N bodies also must be zero

N
> Fi-ori=0 (6.18)

Decomposing the force F; on particle 4 into applied forces F{* and constraint forces £~ gives

N N

S OFori+ > £ ori =0 (6.19)

1 3
The second term in equation 6.19 can be ignored if the virtual work due to the constraint forces is zero.
This is rigorously true for rigid bodies and is valid for any forces of constraint where the constraint forces
are perpendicular to the constraint surface and the virtual displacement is tangent to this surface. Thus if
the constraint forces do no work, then (6.19) reduces to

N

Y Fdbri=0 (6.20)

i

This relation is the Bernoulli’s Principle of Static Virtual Work and is used to solve problems in statics.
Bernoulli introduced dynamics by using Newton’s Law to related force and momentum.

F; = p; (6.21)
Equation (6.21) can be rewritten as
Fi—pi=0 (6.22)
In 1742, d’Alembert developed the Principle of Dynamic Virtual Work in the form

N
> (Fi—pi)-or; =0 (6.23)
i
Using equations (6.19) plus (6.23) gives

N N
S (FL —pi) o+ £ or =0 (6.24)

i

For the special case where the forces of constraint are zero, then equation 6.24 reduces to d’Alembert’s

Principle
N

Z(Ffl —pi)-or; =0 (6.25)
i
d’Alembert’s Principle, by a stroke of genius, cleverly transforms the principle of virtual work from the realm
of statics to dynamics. Application of virtual work to statics primarily leads to algebraic equations between
the forces, whereas d’Alembert’s principle applied to dynamics leads to differential equations.



6.3. LAGRANGE EQUATIONS FROM D’ALEMBERT’S PRINCIPLE 129

6.3.2 Transformation to generalized coordinates

In classical mechanical systems the coordinates dr; usually are not independent due to the forces of constraint
and the constraint-force energy contributes to equation 6.24. These problems can be eliminated by expressing
d’Alembert’s Principle in terms of virtual displacements of n independent generalized coordinates q; of the
system for which the constraint force term > £f¢ - 6q; = 0. Then the individual variational coefficients dg;
are independent and (F# — ;) - q; = 0 can be equated to zero for each value of i.
The transformation of the N-body system to n independent generalized coordinates g can be expressed
as
r; :ri(qlanaQ3"'7Qnﬂt) (626)

Assuming n independent coordinates, then the velocity v; can be written in terms of general coordinates g
using the chain rule for partial differentiation.

_ dri 2 81‘1‘ 8ri

= N T 6.27
Vi="u jaqjqj+8t (6.27)

The arbitrary virtual displacement dr; can be related to the virtual displacement of the generalized coordinate
(qu' by
n
Jr;
(SI‘i = —Z(Sq]‘ (628)
—~ 9q;
J
Note that by definition, a virtual displacement considers only displacements of the coordinates, and no time
variation dt is involved.
The above transformations can be used to express d’Alembert’s dynamical principle of virtual work in
generalized coordinates. Thus the first term in d’Alembert’s Dynamical Principle, (6.25) becomes

iFf‘-éri:iFf‘-
i i,j

where @Q; are called components of the generalized force,' defined as

0
7]

r;
4a;j

J

- 81‘1'
Q=) Fi o0 (6.30)

K3

Note that just as the generalized coordinates g; need not have the dimensions of length, so the @); do not
necessarily have the dimensions of force, but the product );d¢; must have the dimensions of work. For
example, @; could be torque and dg; could be the corresponding infinitessimal rotation angle.

The second term in d’Alembert’s Principle (6.25) can be transformed using equation 6.28

zn:pz - 0r; = imii’i -0r; = (Zn: m;t; - %) dg; (6.31)

The right-hand side of (6.31) can be rewritten as

" .. Or; _ - d . Or; . d [Or;
(Zi "oy ) =3 (e G) - (55) oo .

Note that equation (6.27) gives that

6vi (’)ri
— = 6.33
9, 9g, (6.33)
therefore the first right-hand term in (6.32) can be written as
d . Or; d v,
= o) == v —L 34
p <m1rl 8%) o <mzvz 8qj> (6.34)

I This proof, plus the notation, conform with that used by Goldstein [Go50] and by other texts on classical mechanics.
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The second right-hand term in (6.32) can be rewritten by interchanging the order of the differentiation with

respect to t and g;
d Gri 8vi
dt ((‘9%) 9 (63%)

Substituting (6.34) and (6.35) into (6.32) gives

" No(d ov; Ov;
Zpi -0r; = Zmlrl — | dq; = Z 7 m;v; - 5'_(]] —m;V; - 8_(]] dq; (6.36)

Inserting (6.29) and (6.36) into d’Alembert’s Principle (6.25) leads to the relation

Z(Ff‘ —P;) - 0r; = — ; {% (% (; %mwf)) - % (Z %mz ) Qj} dq; =0 (6.37)

% %

The Y7 2m v term can be identified with the system kinetic energy 7. Thus d’Alembert Principle reduces

to the rela‘mon
N
d (0T oT
2 17 (5) -7} -] =0 (0

For cartesian coordinates T' is a function only of velocities (&, ¢, 2) and thus the term 2 8 = (0. However,
as discussed in appendix C.2.2, for curvilinear coordinates g—;"; # 0 due to the curvature of the coordinates

as is illustrated for polar coordinates where v =rt + r68.

If all the n generalized coordinates q; are independent, then equation 6.38 implies that the term in the
square brackets is zero for each individual value of j. This leads to the basic Euler-Lagrange equations of
motion for each of the independent generalized coordinates

d (0T oT
{a(a—q-j) aq]} @i (6.39)

where n > j > 1. That is, this leads to n Euler-Lagrange equations of motion for the generalized forces Q).
As discussed in chapter 5.8, when m holonomic constraint forces apply, it is possible to reduce the system
to s = n — m independent generalized coordinates for which equation 6.25 applies.

In 1687 Leibniz proposed minimizing the time integral of his “vis viva”, which equals 27. That is,

ta
5 / Tdt = 0 (6.40)
ty

The variational equation 6.39 accomplishes the minimization of equation 6.40. It is remarkable that Leibniz
anticipated the basic variational concept prior to the birth of the developers of Lagrangian mechanics, i.e.,
d’Alembert, Euler, Lagrange, and Hamilton.

6.3.3 Lagrangian

The handling of both conservative and non-conservative generalized forces @); is best achieved by assuming
that the generalized force Q; = ZZL Ff‘ . g—:; can be partitioned into a conservative velocity-independent term,
that can be expressed in terms of the gradient of a scalar potential, —VU;, plus an excluded generalized force
QJEX which contains the non-conservative, velocity-dependent, and all the constraint forces not explicitly
included in the potential U;. That is,

Qj=-VU; +QF¥ (6.41)

Inserting (6.41) into (6.38), and assuming that the potential U is velocity independent, allows (6.38) to be

rewritten as Zj: H% <3(1;)qj U)) B 8(Taqj U) } 7 Q]EX} 3q; =0 (6.42)
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The definition of the Standard Lagrangian is
L=T-U (6.43)

then (6.42) can be written as

> [{ (52) - 3} -] -

Note that equation (6.44) contains the basic Euler-Lagrange equation (6.38) as a special case when U = 0.
In addition, note that if all the generalized coordinates are independent, then the square bracket terms are
zero for each value of j, which leads to the general Euler-Lagrange equations of motion

d [ OL oL . ex
{dt (3Cb') Jg; } = (6.45)
where n > 7 > 1.

Chapter 6.5.3 will show that the holonomic constraint forces can be factored out of the generalized force
term QfX which simplifies derivation of the equations of motion using Lagrangian mechanics. The general
Euler-Lagrange equations of motion are used extensively in classical mechanics because conservative forces
play a ubiquitous role in classical mechanics.

6.4 Lagrange equations from Hamilton’s Action Principle

Hamilton published two papers in 1834 and 1835, announcing a fundamental new dynamical principle that
underlies both Lagrangian and Hamiltonian mechanics. Hamilton was seeking a theory of optics when he
developed Hamilton’s Action Principle, plus the field of Hamiltonian mechanics, both of which play a crucial
role in classical mechanics and modern physics. Hamilton’s Action Principle states “ dynamical systems
follow paths that minimize the time integral of the Lagrangian”. That is, the action functional S

12
S= / L(q, 4.t)dt (6.46)

ty

has a minimum value for the correct path of motion. Hamilton’s Action Principle can be written in
terms of a virtual infinitessimal displacement ¢, as

to
5S =10 / Ldt =0 (6.47)

t1

Variational calculus therefore implies that a system of s independent generalized coordinates must satisfy
the basic Lagrange-Euler equations

o =2 =0 (6.48)

Note that for Qfx = 0, this is the same as equation 6.45 which was derived using d’Alembert’s Principle.

This discussion has shown that Euler’s variational differential equation underlies both the differential vari-
ational d’Alembert Principle, and the more fundamental integral Hamilton’s Action Principle. As discussed
in chapter 9.2, Hamilton’s Principle of Stationary Action adds a fundamental new dimension to classical
mechanics which leads to derivation of both Lagrangian and Hamiltonian mechanics. That is, both Hamil-
ton’s Action Principle, and d’Alembert’s Principle, can be used to derive Lagrangian mechanics leading to
the most general Lagrange equations that are applicable to both holonomic and non-holonomic constraints,
as well as conservative and non-conservative systems. In addition, Chapter 6.2 presented a plausibility ar-
gument showing that Lagrangian mechanics can be justified based on Newtonian mechanics. Hamilton’s
Action Principle, and d’Alembert’s Principle, can be expressed in terms of generalized coordinates which is
much broader in scope than the equations of motion implied using Newtonian mechanics.
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6.5 Constrained systems

The motion for systems subject to constraints is difficult to calculate using Newtonian mechanics because
all the unknown constraint forces must be included explicitly with the active forces in order to determine
the equations of motion. Lagrangian mechanics avoids these difficulties by allowing selection of independent
generalized coordinates that incorporate the correlated motion induced by the constraint forces. This allows
the constraint forces acting on the system to be ignored by reducing the system to a minimal set of generalized
coordinates. The holonomic constraint forces can be determined using the Lagrange multiplier approach, or
all constraint forces can be determined by including them as generalized forces, as described below.

6.5.1 Choice of generalized coordinates

As discussed in chapter 5.8, the flexibility and freedom for selection of generalized coordinates is a consid-
erable advantage of Lagrangian mechanics when handling constrained systems. The generalized coordinates
can be any set of independent variables that completely specify the scalar action functional, equation 6.46.
The generalized coordinates are not required to be orthogonal as is required when using the vectorial New-
tonian approach. The secret to using generalized coordinates is to select coordinates that are perpendicular
to the constraint forces so that the constraint forces do no work. Moreover, if the constraints are rigid, then
the constraint forces do no work in the direction of the constraint force. As a consequence, the constraint
forces do not contribute to the action integral and thus the Y & - ér; term in equation 6.19 can be omit-
ted from the action integral. Generalized coordinates allow reducing the number of unknowns from n to
s = n —m when the system has m holonomic constraints. In addition, generalized coordinates facilitate
using both the Lagrange multipliers, and the generalized forces, approaches for determining the constraint
forces.

6.5.2 Minimal set of generalized coordinates

The set of n generalized coordinates ¢; are used to describe the motion of the system. No restrictions have
been placed on the nature of the constraints other than they are workless for a virtual displacement. If the
m constraints are holonomic, then it is possible to find sets of s = n —m independent generalized coordinates
g; that contain the m constraint conditions implicitly in the transformation equations

ri =1;(q1,92,G3-.-,¢s, t) (6.49)

For the case of s = n — m unknowns, any virtual displacement dq; is independent of dqs, therefore the
only way for (6.44) to hold is for the term in brackets to vanish for each value of j, that is

d (OL\ 0L\ _  px
(i (5r) )= .

where 7 = 1,2,3,.. s. These are the Lagrange equations for the minimal set of s independent generalized
coordinates.

If all the generalized forces are conservative plus velocity independent, and are included in the potential
U, and Qfx =0, then (6.50) simplifies to

{% (STL) ) g_qL} ! (6.51)

This is Euler’s differential equation, derived earlier using the calculus of variations. Thus d’Alembert’s
Principle leads to a solution that minimizes the action integral § f:f Ldt = 0 as stated by Hamilton’s
Principle.

6.5.3 Lagrange multipliers approach

Equation (6.44) sums over all n coordinates for N particles, providing n equations of motion. If the m
constraints are holonomic they can be expressed by m algebraic equations of constraint

gk(Qlaq27"Q7Lat) =0 (652)
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where k = 1,2, 3,...m. Kinematic constraints can be expressed in terms of the infinitessimal displacements

of the form
n

gk
Z dgj +—=dt =0 (6.53)

where k =1,2,3,...m, j = 1,2,3,...n, and where the 8gk , and 8% are functions of the generalized coordinates

gj, described by the vector q, that are derived from the equatlonb of constraint. As discussed in chapter 5.7,
if (6.53) represents the total differential of a function, then it can be integrated to give a holonomic relation
of the form of equation (6.52). However, if (6.53) is not the total differential, then it can be integrated only
after having solved the full problem. If aaitk = 0 then the k" constraint is scleronomic.

The discussion of Lagrange multipliers in chapter 5.9.1, showed that, for virtual displacements dg;,
the correlation of the generalized coordinates, due to the constraint forces, can be taken into account by
multiplying (6.53) by unknown Lagrange multipliers \; and summing over all m constraints. Generalized
forces can be partitioned into a Lagrange multiplier term plus a remainder force. That is

QFX = Zxk% (a 1) + QFXC (6.54)

since by definition 6t = 0 for virtual displacements.

Chapter 5.9.1 showed that holonomic forces of constraint can be taken into account by introducing
the Lagrange undetermined multipliers approach, which is equivalent to defining an extended Lagrangian
L'(q, 4, At) where

L'(q,a,At) = L(q, 4,1) +ZZ/\k 09k ( (6.55)
k=1 j=1

Finding the extremum for the extended Lagrangian L'(q, 4, \,t) using (6.47) gives

" d (0L 89k EXC
— (== A 5q; =0 6.56
zj: l{ dt (3%) 3%} kZI “9g; @ “ (656)

where QJEX € is the remaining part of the generalized force Q; after subtracting both the part of the force
absorbed in the potential energy U, which is buried in the Lagrangian L, as well as the holonomic constraint
forces which are included in the Lagrange multiplier terms > ;" )\k%%?(q, t). The m Lagrange multipliers

Ak can be chosen arbitrarily in (6.56) . Utilizing the free choice of the m Lagrange multipliers Ay allows them
to be determined in such a way that the coefficients of the first m infinitessimals, i.e. the square brackets
vanish. Therefore the expression in the square bracket must vanish for each value of 1 < j < m. Thus it

follows that
d (0L 3% EXC
{dt <aqj) } ZA’“ me =0 (657

when j =1,2,..m. Thus (6.56) reduces to a sum over the remaining coordinates between m +1 < j <n

" d (0L 3gk EXC
il A , 5q; = 0 6.58
2 Hdt <8%‘> 3%} ; Kag;, Y o (659

j=m+1

In equation (6.58) the s = n — m infinitessimals dg; can be chosen freely since the s = n — m degrees
of freedom are independent. Therefore the expression in the square bracket must vanish for each value of
m+1 < j <n. Thus it follows that

d (OL\ 0L\ N~y 99k, . _ Exc _
{dt <8%—) 3%} ZAkaqj(q’t) Q=0 (6.59)

k=1

where j = m+1,m+2,..n. Combining equations (6.57) and (6.59) then gives the important general relation

that for 1 <j<n
d (9L 3gk EXC
- - A , 6.60
{dt (3%) 3%} ; Kag, @ T (60)
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To summarize, the Lagrange multiplier approach (6.60) automatically solves the n equations plus the
m holonomic equations of constraint, which determines the nm + m unknowns, that is, the n coordinates
plus the m forces of constraint. The beauty of the Lagrange multipliers is that all n variables, plus the m
constraint forces, are found simultaneously by using the calculus of variations to determine the extremum
for the expanded Lagrangian L'(q, q, At).

6.5.4 Generalized forces approach

The two right-hand terms in (6.60) can be understood to be those forces acting on the system that are
not absorbed into the scalar potential U component of the Lagrangian L. The Lagrange multiplier terms
Sy /\kg‘—gf(q, t) account for the holonomic forces of constraint that are not included in the conservative

potential or in the generalized forces QJEX €. The generalized force

EXC a4 Or
QFXC = ZF o0 (6.17)
is the sum of the components in the g; direction for all external forces that have not been taken into account
by the scalar potential or the Lagrange multipliers. Thus the non-conservative generalized force QJEX ¢
contains non-holonomic constraint forces, including dissipative forces such as drag or friction, that are not
included in U, or used in the Lagrange multiplier terms to account for the holonomic constraint forces.

The concept of generalized forces is illustrated by the case of spherical coordinate systems. The attached
table gives the displacement elements d¢;, (taken from table C4) and the generalized force for the three
coordinates. Note that (); has the dimensions of force and @Q;.dq; has the units of energy. By contrast
equation 6.30 gives that Q)9 = Fyr and )y = Fyyr which have the dimensions of torque. However, Q906 and
Q40¢ both have the dimensions of energy as is required in equation 6.30. This illustrates that the units used
for generalized forces depend on the units of the corresponding generalized coordinate.

Unit vectors 0q; Q; Q; - 0q;
7 tdr tF, F,dr
(7] Ordo OFyr Fyrdf
o} ¢rsinfde | ¢Fyrsing | FyrsinOde

6.6 Applying the Euler-Lagrange equations to classical mechanics

d’Alembert’s principle of virtual work has been used to derive the Euler-Lagrange equations, which also
satisfy Hamilton’s Principle, and the Newtonian plausibility argument. These imply that the actual path
taken in configuration space (g;,q;,t) is the one that minimizes the action integral fttlz L(gj,q;;t)dt. As a
consequence, the Euler equations for the calculus of variations lead to the Lagrange equations of motion.

d (OL\ 9L\ _ N~ 9o EXC
{dt (3%‘) 5qg‘}_z>\k5qj(q7t)+Qj (6.60)

k=1

for n variables, with m equations of constraint. The generalized forces are not included in the
conservative, potential energy U, or the Lagrange multipliers approach for holonomic equations of constraint.?

The following is a logical procedure for applying the Euler-Lagrange equations to classical mechanics.

QJEXC

1) Select a set of independent generalized coordinates:

Select an optimum set of independent generalized coordinates as described in chapter 6.5.1. Use of generalized
coordinates is always advantageous since they incorporate the constraints, and can reduce the number of
unknowns, both of which simplify use of Lagrangian mechanics

2Euler’s differential equation is ubiquitous in Lagrangian mechanics. Thus, for brevity, it is convenient to define the concept
of the Lagrange linear operator Aj;, as described in appendix F2.

where A; operates on the Lagrangian L. Then Euler’s equations can be written compactly in the form A;L = 0.



6.6. APPLYING THE EULER-LAGRANGE EQUATIONS TO CLASSICAL MECHANICS 135

2) Partition of the active forces:

The active forces should be partitioned into the following three groups:

(i) Conservative one-body forces plus the velocity-dependent electromagnetic force which
can be characterized by the scalar potential U, that is absorbed into the Lagrangian. The gravitational
forces plus the velocity-dependent electromagnetic force can be absorbed into the potential U as discussed
in chapter 6.10. This approach is by far the easiest way to account for such forces in Lagrangian mechanics.

(ii) Holonomic constraint forces provide algebraic relations that couple some of the generalized coor-
dinates. This coupling can be used either to reduce the number of generalized coordinates, or to determine
these holonomic constraint forces using the Lagrange multiplier approach.

(iii) Generalized forces provide a mechanism for introducing non-conservative and non-holonomic
constraint forces into Lagrangian mechanics. Typically general forces are used to introduce dissipative
forces.

Typical systems can involve a mixture of all three categories of active forces. For example, mechanical
systems often include gravity, introduced as a potential, holonomic constraint forces are determined using
Lagrange multipliers, and dissipative forces are included as generalized forces.

3) Minimal set of generalized coordinates:

The ability to embed constraint forces directly into the generalized coordinates is a tremendous advantage
enjoyed by the Lagrangian and Hamiltonian variational approaches to classical mechanics. If the constraint
forces are not required, then choice of a minimal set of generalized coordinates significantly reduces the
number of equations of motion that need to be solved .

4) Derive the Lagrangian:

The Lagrangian is derived in terms of the generalized coordinates and including the conservative forces that
are buried into the scalar potential U.

5) Derive the equations of motion:

Equation (6.60) is solved to determine the n generalized coordinates, plus the m Lagrange multipliers char-
acterizing the holonomic constraint forces, plus any generalized forces that were included. The holonomic
constraint forces then are given by evaluating the )\k%%?(q, t) terms for the m holonomic forces.

In summary, Lagrangian mechanics is based on energies which are scalars in contrast to Newtonian
mechanics which is based on vector forces and momentum. As a consequence, Lagrange mechanics allows
use of any set of independent generalized coordinates, which do not have to be orthogonal, and they can
have very different units for different variables. The generalized coordinates can incorporate the correlations
introduced by constraint forces.

The active forces are split into the following three categories;

1. Velocity-independent conservative forces are taken into account using scalar potentials Us;.
2. Holonomic constraint forces can be determined using Lagrange multipliers.

3. Non-holonomic constraints require use of generalized forces Qfx .

Use of the concept of scalar potentials is a trivial and powerful way to incorporate conservative forces in
Lagrangian mechanics. The Lagrange multipliers approach requires using the Euler-Lagrange equations for
n+m coordinates but determines both holonomic constraint forces and equations of motion simultaneously.
Non-holonomic constraints and dissipative forces can be incorporated into Lagrangian mechanics via use of
generalized forces which broadens the scope of Lagrangian mechanics.

Note that the equations of motion resulting from the Lagrange-Euler algebraic approach are the same
equations of motion as obtained using Newtonian mechanics. However, the Lagrangian is a scalar which
facilitates rotation into the most convenient frame of reference. This can greatly simplify determination of
the equations of motion when constraint forces apply. As discussed in chapter 17, the Lagrangian and the
Hamiltonian variational approaches to mechanics are the only viable way to handle relativistic, statistical,
and quantum mechanics.
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6.7 Applications to unconstrained systems

Although most dynamical systems involve constrained motion, it is useful to consider examples of systems
subject to conservative forces with no constraints. For no constraints, the Lagrange-Euler equations (6.60)
simplify to A;L = 0 where j = 1,2,..n, and the transformation to generalized coordinates is of no conse-
quence.

6.1 Example: Motion of a free particle, U=0

The Lagrangian in cartesian coordinates is L = %m(j:2 + 92 + 22). Then

8_L = mz
o
oL .
o "
8_L = mz
FE
oL _ oL _ 9L _
or Oy 0z
Insert these in the Lagrange equation gives
doL 0L d
ANL=——F—-——=—mi—-0=0
oz o dt
Thus
pe = max = constant
py = my = constant
p, = mz = constant

That is, this shows that the linear momentum is conserved if U is a constant, that is, no forces apply. Note
that momentum conservation has been derived without any direct reference to forces.
6.2 Example: Motion in a uniform gravitational field

Consider the motion is in the x — y plane. The

kinetic energy T = %m (at2 + y2) while the potential

energy is U = mgy where U(y = 0) = 0. Thus ¥
1 . .
L= im (a:2 + y2> — mgy
*y) g
Using the Lagrange equation for the x coordinate .
gives
r

doL 0oL d

oz oz dt
Thus the horizontal momentum mx s conserved and o
x = 0. The y coordinate gives X

d 0L 0L d . Motion in a gravitational field

AL =—————=—my+mg=0

dt oy Oy dt

Thus the Lagrangian produces the same results as de-
rived using Newton’s Laws of Motion.

E=0  y=-g
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The importance of selecting the most convenient generalized coordinates is nicely illustrated by trying to
solve this problem using polar coordinates r,6, where r is radial distance and 0 the elevation angle from the
T axis as shown in the adjacent figure. Then

1 1 N2
T = —mi? + §m (7‘0)

2
U = mgrsiné
Thus
1 2 1 -\ 2 .
L= 3™ + 3m (7’9) — mgrsin 6

A,.L =0 for the r coordinate ,
rf” — gsin® — i =0
AgL = 0 for the 6 coordinate ) )
—grcosf — 2ri — 1?0 =0

These equations written in polar coordinates are more complicated than the result expressed in cartesian
coordinates. This is because the potential energy depends directly on the y coordinate, whereas it is a function
of both r,0. This illustrates the freedom for using different generalized coordinates, plus the importance of
choosing a sensible set of generalized coordinates.

6.3 Example: Central forces

Consider a mass m moving under the influence of a spherically-symmetric, conservative, attractive,
inverse-square force. The potential then is

v=-t
r

It is natural to express the Lagrangian in spherical coordinates for this system. That is,

1 1 N2 1 .
L= §m7*2 + 3m (7‘0) + §m(r sin 0¢)? + é
AL =0 for the v coordinate gives
, ) k
mit — mr[92 + sin? 9gz52] ==
r

.2
where the mrsin®0¢~ term comes from the centripetal acceleration.
Ay L =0 for the ¢ coordinate gives
d .
o (mr2 sin? 0(;5) =0
This implies that the derivative of the angular momentum about the ¢ axis, p, = 0 and thus ps = mr? sin? 042)
is a constant of motion.
AgL = 0 for the 0 coordinate gives

d ) )
7 (mr260) — mr? sin 0 cos 0(;52 =0
That 1is,
2
] 5 . .2 p; cost
=mr<sinfcosfp = ————
bo ¢ 2mr2 sin® 0

Note that pg is a constant of motion if py = 0 and only the radial coordinate is influenced by the radial form
of the central potential.
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6.8 Applications to systems involving holonomic constraints

The equations of motion that result from the Lagrange-Euler algebraic approach are the same as those given
by Newtonian mechanics. The solution of these equations of motion can be obtained mathematically using
the chosen initial conditions. The following simple example of a disk rolling on an inclined plane, is useful
for comparing the merits of the Newtonian method with Lagrange mechanics employing either minimal
generalized coordinates, the Lagrange multipliers, or the generalized forces approaches.

6.4 Example: Disk rolling on an inclined plane

Consider a disk rolling down an inclined plane to compare
the results obtained using Newton’s laws with the results ob-
tained using Lagrange’s equations with either generalized coor-
dinates, Lagrange multipliers, or generalized forces. All these
cases assume that the friction is sufficient to ensure that the
rolling equation of constraint applies and that the disk has a
radius R and moment of inertia of I. Assume as generalized
coordinates, distance along the inclined plane y which is per-
pendicular to the normal constraint force N, and perpendicular
to the inclined plane x, plus the rolling angle 6. The constraint
for rolling is holonomic

y—RO=0

=~

The frictional force is Fy. The constraint that it rolls along the Disk rolling W.ithOUt slipping on an
plane implies inclined plane.

zt—R=0

a) Newton’s laws of motion
Newton’s law for the components of the forces along the inclined plane gives
mgsina — Fy = my (a)

Perpendicular to the inclined plane, Newton’s law gives

mgcosa =N (b)
The torque on the disk gives )
FfR=10 (c)
Assuming the disc rolls gives )
y = RO
then 7
Fy = ﬁ?j

Inserting this into equation (a) gives

1
<m+ﬁ)ymgsina—0

The moment of inertia of a uniform solid circular disk is I = %mR2

Therefore

L2
= —gsina
Y 39

and the frictional force is
mg .
Fy = = sin «v

which is smaller than the gravitational force along the plane which is mgsin c.
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b) Lagrange equations with a minimal set of generalized coordinates
Using the generalized coordinates defined above, the total kinetic energy is
1 1 .2
T =—-my*+ =10
3™ g

The conservative gravitational force can be absorbed into the potential energy
U=mg(l —y)sina

Thus the Lagrangian is

1 1.
L= §my2 + 5]92 —mg(l —y)sina

The holonomic equations of constraint are

g = y—RO=0
g = z—R=0

A holonomic constraint can be used to reduce the system to a single generalized coordinate y plus generalized
velocity 1. Expressed in terms of this single generalized coordinate, the Lagrangian becomes

I
L= 3 <m—|— ﬁ) 7* —mg(l —y)sina
The Lagrange equation AyL = 0 gives

I
mgsina = (m—i— ﬁ) Y

Again if T = %mR2 then

L2
= —gsina
Y 39

The solution for the x coordinate is trivial. This answer is identical to that obtained using Newton’s laws
of motion. Note that no forces have been determined using the single generalized coordinate.

¢) Lagrange equation with Lagrange multipliers

Again the conservative gravitation force is absorbed into the scalar potential while the holonomic constraints
are taken into account using Lagrange multipliers. Ignoring the trivial x dependence, the Lagrangian is given
above to be

1 1.
L= §my2 + 5]92 —mg(l —y)sina

The constraint equations are

g1 = y—RO=0
g = z—R=0

The Lagrange equation for the y coordinate

d oL 0L on
—— —— =A==+ X0
woy oy Loy M
gives
my —mgsina = A\

The Lagrange equation for the 0 coordinate

doL OL  Ogq



140 CHAPTER 6. LAGRANGIAN DYNAMICS

which gives

10 = —\R

The constraint can be written as )

i = RO
Let I = %ZWR2 and solve for y,0 and \ gives

A= g — si a=-—Ysna
(1+ =) 3
The frictional force is given by
0
Fy = )qaiyl =)\ =——"sina

Also 5
my =mgsina + \; = gmgsina

and the torque is )
-MR=F;R=10

d) Lagrange equation using a generalized force

Again the conservative gravitation force is absorbed into the scalar potential while the holonomic constraints
are taken into account using generalized forces. Ignoring the trivial x dependence, the Lagrangian was given
above to be

1 1.
L= §m3)2 + 5]92 —mg(l —y)sina

The generalized forces (6.30) are

Qy = —Fy
Qo = FfR

The Euler-Lagrange equations are:
The AyL = Qy Lagrange equation for the y coordinate

myj —mgsina = Q, = —Fy
The AgL = Qg Lagrange equation for the 6 coordinate

10 = Q¢ = FfR
The constraint equation gives that y = RO and assuming I = %mR2 leads to the Qg relation
Qo m ..
20 _p, =
r 172V

Substitute this equation into the @y relation gives that

myj —mgsina =Q, = —Fy = %y

Thus 5
Yy = gg sin «

and m
Fy = f?g sin «

The four methods for handling the equations of constraint all are equivalent and result in the same
equations of motion. The scalar Lagrangian mechanics is able to calculate the vector forces acting in a direct
and simple way. The Newton’s law approach is more intuitive for this simple case and the ease and power
of the Lagrangian approach is not apparent for this simple system.

The following series of examples will gradually increase in complexity, and will illustrate the power,
elegance, plus superiority of the Lagrangian approach compared with the Newtonian approach.
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6.5 Example: Two connected masses on frictionless inclined planes

Consider the system shown in the figure. This is
a problem that has five constraints that will be solved
using the method of generalized coordinates. The ob-
vious generalized coordinates are x1 and xo which are
perpendicular to the mormal constraint forces on the
inclined planes. Another holonomic constraint is that
the length of the rope connecting the masses is assumed
to be constant. Thus the equation of constraint is that

T1+29—1=0
The other four constraints ensure that the two masses
slide directly down the inclined planes in the plane Two connected masses on frictionless inclined
shown. This is assumed implicitly by using only the planes

variables, x1 and xo. Let us chose x1 as the primary
generalized coordinate, thus

To = | — X1
y1. = x1sinf;
y2 = (Il—xp)sinfy

The conservative gravitational force is absorbed into the potential energy given by

U= —mygz1sinf; — mag (I — 1) sin by

Since ©1 = —xo the kinetic energy is given by
. 2 1 . 2 1 .2
T = §m1z1 + §m2z2 =3 (my + mg) &7

The Lagrangian then gives that

1
L= = (my +my) &2 +mygz;sinfy + mag (I — 1) sin fy

2
Therefore
oL .
i (my + me) i1
g—gi = g(mqsinf; —mysinbsy)
Hhus d oL oL
Ay, L= U oi  mn =0=(my +mg) i — g (mysinf; — masinbs)

Note that the system acts as though the inertial mass is (my + ms) while the driving force comes from the
difference of the forces. The acceleration is zero if

mi sin 01 = M2 sin 02

A special case of this is the Atwood’s machine with a massless pulley shown in the adjacent figure. For
this case 61 = 05 = 90°. Thus
(m1 +m2) &1 = g (m1 —ma2)
Note that this problem has been solved without any reference to the force in the rope or the normal constraint
forces on the inclined planes.
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6.6 Example: Two blocks connected by a frictionless bar

Two identical masses m are connected by a massless
rigid bar of length I, and they are constrained to move
in two frictionless slides, one vertical and the other hor- Y
izontal as shown in the adjacent figure. Assume that the
conservative gravitational force acts along the negative y
azis and is incorporated into the scalar potential U. The
generalized coordinate can be chosen to be the angle «
corresponding to a single degree of freedom. The relative Ji
cartesian coordinates of the blocks are given by

Tz = lcosa
= Isina o
Thus
X
S (s .
t (sin a_)a Two frictionless masses that are connected by a
= l(cosa)a bar and are constrained to slide in vertical and

This constraint, that is absorbed into the generalized co- horizontal channels.

ordinate, is holonomic, scleronomic, and conservative.
The kinetic energy is given by

1 1
T= 3m (ZQ(sina)2d2 + PP(cosa)?d®) = amZQézQ

The gravitational potential energy is given by
U = mgy = mglsin«
Thus the Lagrangian is
L= %ml2d2 — mglsina
Using the Lagrange operator equation Ao, L =0 gives

ml?&+mglcosa =

0
d—i—%cosa =0

Multiply by & yields
ad + %0’4 cosa =10

This can be integrated to give

1
§d2+%sina:c

where ¢ is a constant. That is
. ( g . )
a=4/2(c— 7 sin «
Separation of the variable gives

do

2 (c— %sinoz)

dt

Integration of this gives

@ do
t—toz/ S
ao ,/Q(C—%sina)

The constants ¢ and ty are determined from the given initial conditions.
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6.7 Example: Block sliding on a movable frictionless inclined plane

Consider a block of mass m free to slide on a smooth
frictionless inclined plane of mass M that is free to slide
horizontally as shown in the adjacent figure. The siz de-
grees of freedom can be reduced to two independent gen-
eralized coordinates since the inclined plane and mass m
are confined to slide along specific non-orthogonal direc-
tions. Choose x as the coordinate for movement of the
inclined plane in the horizontal 7 direction and x' the
position of the block with respect to the surface of the
inclined plane in the & direction which is inclined down-
ward at an angle 0. Thus the velocity of the inclined
plane is

V=i A block sliding on a frictionless movable inclined
while the velocity of the small block on the inclined plane plane.
18

v =i + é&i’

The kinetic energy is given by

1 1 1 1
T=5MV-Vismy.v = 5M:'c2 - 5m[i:2 + 2" + 244’ cos ]

The conservative gravitational force is absorbed into the scalar potential energy which depends only on the
vertical position of the block and is taken to be zero at the top of the wedge.

U= —mgz'sind

Thus the Lagrangian is
1 1
L= §Mi:2 + Em[;i? + 4'% 4 2’ cos 0] + mga’ sin 6
Consider the Lagrange-Fuler equation for the x coordinate, A, L = 0 which gives

%[m(a’c—i—i:'cos@) +Mi]=0 (a)
which states that [m(z + &' cos @) + M) is a constant of motion. This constant of motion is just the total
linear momentum of the complete system in the x direction. That is, conservation of the linear momentum
is satisfied automatically by the Lagrangian approach. The Newtonian approach also predicts conservation of
the linear momentum since there are no external horizontal forces,

Consider the Lagrangian equation for the x' coordinate Ay L = 0 which gives

%[i" + 2 cosf] = gsinf (b)

Perform both of the time derivatives for equations a and b give

mli + i’ cosf) + M@ = 0
i +icosf = gsinf
Solving for & and T’ gives
P —gsinfcosf
~ (m+M)/m — cos? 0
and. .
s gsinf

1 —mcos?0/(m+ M)

This example illustrates the flexibility of being able to use non-orthogonal displacement vectors to specify the
scalar Lagrangian energy. Newtonian mechanics would require more thought to solve this problem.
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6.8 Example: Sphere rolling without slipping down an inclined plane on a
frictionless floor.

A sphere of mass m and radius r rolls, without slipping, down an inclined plane, of mass M, sitting on a
frictionless horizontal floor as shown in the adjacent figure. The velocity of the rolling sphere has horizontal
and vertical components of

Vy = :ic—&—R@coscp
vy = —Ré?sincp

Assume initial conditions are t =0, =0,z =0,0 =0,y = h,& = 0 = 0. Choose the independent coordinates
x and 0 as generalized coordinates plus the holonomic constraint £ = RO. Then the Lagrangian is

L= - T % R 2rif cos p| + %TQQQ —mg (h —rfsiny)
Lagrange’s equations AL =0 and AgL = 0, give
(M 4+m)i+mrfcosp = 0 y
7.
Zcosp + 57”9 —gsinp = 0

Eliminating & gives
Z_mcosch é:gsinap
5 M+m r

Integrate this equation assuming the initial conditions,
results in

0— 5(M +m)sine .2 ~—Xx—>
~ 2[7(M +m) — 5m cos? <p]g
X
Thus Solid sphere rolling without slipping on an
mreosg, 5msin (2¢) ) inclined plane on a frictionless horizontal floor.

Tr =

M+m = 4[7(M +m) — 5mcos? ]

Note that these equations predict conservation of linear
momentum for the block plus sphere.

6.9 Example: Mass sliding on a rotating straight frictionless rod.

Consider a mass m sliding on a frictionless rod that
rotates about one end of the rod with an angular velocity

0. Choose 1 and 0 to be generalized coordinates. Then
the kinetic energy is given by

1 1 .
T= §m7'42 + §mr292

and potential energy /
U=0

r

The Lagrange equation for ¢ gives Mass sliding on a rotating straight frictionless

_doL 9L d, rod.

aoL oL a4, 2n
L= a0 —al=0

Thus the angular momentum is constant

mr?0 = constant = Do
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The Lagrange equation for r gives

_dOoL 0L
dtor Or
The 0 equation states that the angular momentum is conserved for this case which is what we expect since

there are no external torques acting on the system. The r equation states that the centrifugal acceleration is
# = rw?. These equations of motion were derived without reference to the forces between the rod and mass.

AL =mi — mr92 =0

6.10 Example: Spherical pendulum

The spherical pendulum is a classic holonomic
problem in mechanics that involves rotation plus os-

cillation where the pendulum is free to swing in any v/ /]
direction. This also applies to a particle constrained U=0

to slide in a smooth frictionless spherical bowl under

gravity, such as a bar of soap in a wet hemispherical ¢)

sink. Consider the equation of motion of the spher-
ical pendulum of mass m and length b shown in the
adjacent figure. The most convenient generalized co-

ordinates are r,0, ¢ with origin at the fulcrum, since g b
the length is constrained to be r = b. The kinetic
enerqy is

1 . 1 .
T= imb292 + §mb2 sin? 0¢>2

The potential energy @ C.:) "

U = —mgbcos

Spherical pendulum
giving that

1 , 1 )
L= imeGQ + 5mb? sin” 06" + mgbcos

The Lagrange equation for 6
_doL 0L

0

which gives
mb?0 = mb2<i52 sin @ cos§ — mgbsin f
The Lagrange equation for ¢

doL O0L d .
AL = —— — — = —[mb?sin®6¢] = 0
YT dtog 99 i d
which gives '
mb? sin’ ¢ = pp = constant
This is just the angular momentum pg for the pendulum rotating in the ¢ direction. Automatically the
Lagrange approach shows that the angular momentum pg is a conserved quantity. This is what is expected

from Newton’s Laws of Motion since there are no external torques applied about this vertical axis.
The equation of motion for 0 can be simplified to

pi cos 6
m2btsin® 6

There are many possible solutions depending on the initial conditions. The pendulum can just oscillate
in the 0 direction, or rotate in the ¢ direction or some combination of these. Note that if py is zero, then

é—k%sin@—

the equation reduces to the simple harmonic pendulum, while the other extreme is when =0 for which the
motion is that of a conical pendulum that rotates at a constant angle 0y to the vertical axis.
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6.11 Example: Spring plane pendulum

A mass m is suspended by a spring with spring constant k in the gravitational field. Besides the longi-
tudinal spring vibration, the spring performs a plane pendulum motion in the vertical plane, as illustrated in
the adjacent figure. Find the Lagrangian, the equations of motion, and force in the spring.

The system is holonomic, conservative, and scleronomic. Introduce plane polar coordinates with radial
length r and polar angle 0 as generalized coordinates. The generalized coordinates are related to the cartesian
coordinates by

y = rcosf
x = rsind
Therefore the velocities are given by
y = 7 cosf + rfsinf
& = 7sind—rfcosd
The kinetic energy is given by \_@/
1 1 .
T= 5m (j?Q + y2) =35m (7'“2 + r202)

The gravitational plus spring potential energies both can be absorbed

into the potential U. y

Spring pendulum having spring
U = —mgrcosf + k (r —ro)? constant k£ and oscillating in a
vertical plane.

where T denotes the rest length of the spring. The Lagrangian thus equals
L= %m (7"2 + 1"292) + mgr cosf — g (r—ro)?

For the polar angle 0, the Lagrange equation AgL = 0 gives

i (mr%) = —mgrsin 6

The angular momentum py = mr20, thus the equation of motion can be written as
Py = —mgrsin @

Alternatively, evaluating % (mrQQ) gives

mr?0 = —mgr sin 0 — 2mr0

The last term in the right-hand side is the Coriolis force caused by the time variation of the pendulum length.
For the radial distance r, the Lagrange equation A.L =0 gives

mit = mrd) + mgcos — k (r —ro)

This equation just equals the tension in the spring, i.e. F = m#. The first term on the right-hand side
represents the centrifugal radial acceleration, the second term is the component of the gravitational force,
and the third term represents Hooke’s Law for the spring. For small amplitudes of 0 the motion appears as
a superposition of harmonic oscillations in the r,0 plane.

In this example the orthogonal coordinate approach used gave the tension in the spring thus it is unnec-
essary to repeat this using the Lagrange multiplier approach.
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6.12 Example: The yo-yo

Consider a yo-yo comprising a disc that has a string wrapped around it with one end attached to a fized
support. The disc is allowed to fall with the string unwinding as it falls as illustrated in the adjacent figure.
Derive the equations of motion and the forces of constraint via use of Lagrange multipliers. Use y and ¢ as
independent generalized coordinates.

The kinetic energy of the falling yo-yo is given by

U= —mgy

Thus the Lagrangian is

T = 1my2 + %Igf = lmgf + lma%2 7777772777777 7777777777
1 . 1 -2
L= -mg*>+ -ma¢" +mgy

2 2 4
where m is the mass of the disc, a the radius, and I =
Lma? is the moment of inertia of the disc about its central

@

2 1 \

The one equation of constraint is holonomic
9y, ¢) =y —ap =0 \
The two Lagrange equations are

2
azis. The potential energy of the disc is y
oL  d oL g The yo-yo comprises a falling (.hsc unrolling
ERRTY Y v 0 from a string attached to the disc at one end
Y Y Y and a fixed support at the other end.
oL d 0L @ B

90 dios 96
with only one Lagrange multiplier X. FEvaluating these two Euler-Lagrange equations leads to two equations
of motion

0

mg—my+XA = 0
1 .
—ama2¢ —Xa = 0

Differentiating the equation of constraint gives

=1
a
Inserting this into the second equation and solving the two equations gives
1
A=—=
37
Inserting X into the two equations of motion gives
2
Yy = 39
¢ = 3a
The generalized force of constraint
dg 1
F,=A—==—-m
and the constraint torque s
9y
Ny =)= = ¢
1) a¢ Smga

Thus the string reduces the acceleration of the disc in the gravitational field by a factor of %
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6.13 Example: Mass constrained to move on the inside of a frictionless paraboloid
A mass m moves on the frictionless inner surface of a paraboloid
22 4y =p? =az ,

with a gravitational potential energy of U = mgz.

This system is holonomic, scleronomic, and conservative. Choose
cylindrical coordinates p, ¢,z with respect to the vertical axis of the
paraboloid to be the generalized coordinates.

The Lagrangian is

—0

1 )
L= 5m (p2 + p2(;§2 + 2"2) — mgz

The equation of constraint is

9(p,z) =p* —az=0 3

X

The Lagrange multiplier approach will be used to determine the forces

of constraint. Mass constrained to slide on the

For A,L =\ g_z inside of a frictionless paraboloid.
d oL 0L
—— —— = A2
dt o~ or 1P (@)
. 2
m (p —po ) = Mi2p
For AyL = A 5%
d 9" )
7 (mp ¢) =Py =0 (b)

Thus the angular momentum py is conserved, that is, it is a constant of motion.
For AL = )\%g
mZ = —mg— Aia (c)

and the time differential of the constraint equation is
2pp—az =0 (d)

The above four equations of motion can be used to determine r,¢.z, A1.
The radius of the circle at the intersection of the plane z = h, with the paraboloid p* = az, is given by
po = Vah. For a constant height z = h, then 2 =0 and equation (c) reduces to

mg
a

A=
Therefore the constraint force F, is given by

dg(p, z m,

Assuming that p =0, then equation (a) for ¢ =w and p = po gives

mg
m (0 — powz) = M2py = —72p0 =F,

That is, the constraint force equals
F. = *mpOWQ
which is the usual centripetal force. These relations also give that the initial angular velocity required for
such a stable trajectory with height h is
29

a

b=w-=
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6.14 Example: Mass on a frictionless plane connected to a plane pendulum

Two masses my1 and mo are connected by a string of
length 1. Mass my is on a horizontal frictionless table
and it is assumed that mass ms moves in a vertical plane.
This is another problem involving holonomic constrained

motion. The constraints are: =S
1) my moves in the horizontal plane |
2) ms moves in the vertical plane
3) r+s=1. Therefore 7 = —$
There are 6 —3 = 3 remaining degrees of freedom after S

taking the constraints into account. Choose as a set of
generalized coordinates, v, 0, and ¢. In terms of these three
generalized coordinates, the kinetic energy is

1 . 1 .
T = 3m (52 + 32¢2> + 3ma (7'"2 + 7‘292>
1 A 1 .2
= 3m (752 + (- r)2 ¢2> + 52 (7’“2 + 720 ) m,

Mass ms, hanging from a rope that is connected
The potential energy in terms of the generalized coordi- to mq, which slides on a frictionless plane.
nates relative to the horizontal plane, is

U =0 — mgaygrcosf

Therefore the Lagrangian equals

1 . 1 .
L= 5m (7’"2 + (- 7")2 ¢2) + 3me (7'"2 + 7‘292) + magr cos 6

The differentials are

oL
or
oL
or
oL
00
oL
o0
oL
¢
oL
0¢

Thus the three Lagrange equations are

= —m(l - T)g.f)2 + m2r92 + mgr cos 0
= (m1+ma)r

= —mgrsind

= mor?f

= 0

= ml(l—r)Qé

AL = (mg+me)i +my (l—r){éQ —m27“92 —maggcosf =0

d 2' .
AL = T [mgr 0} + mogrsinf =0

that is ' )
2mar0 + 172maf + magrsind = 0
d )
Aol == [ml(Z—r)2¢ =0

This last equation is a statement of the conservation of angular momentum. These three differential equations
of motion can be solved for known initial conditions.
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6.15 Example: Two connected masses constrained to slide along a moving rod

Consider two identical masses m, constrained to move
along the azis of a thin straight rod, of mass M and length
I, which is free to both translate and rotate. Two identi-
cal springs link the two masses to the central point of the
rod. Consider only motions of the system for which the
extended lengths of the two springs are equal and opposite z
such that the two masses always are equal distances from
the center of the rod keeping the center of mass at the
center of the rod. Find the equations of motion for this y
system.

Use a fized cartesian coordinate system (x,y,z) and
a moving frame with the origin O at the center of the
rod with its cartesian coordinates (x1,y1,21) being parallel
to the fized coordinate frame as shown in the figure. Let
(r,0, ) be the spherical coordinates of a point referring to
the center of the moving (x1,y1,21) frame as shown in the
figure. Then the two masses m have spherical coordinates
(r,0,0) and (—r,0,p) in the moving-rod fized frame. The
frictionless constraints are holonomic.

The kinetic energy of the system is equal to the kinetic energy for all the mass concentrated at the center
of mass plus the kinetic energy about the center of mass. Since O is the center of mass then the kinetic
energy can be separated into three terms

Two identical masses m constrained to slide on
a moving rod of mass M. The masses are
attached to the center of the rod by identical
springs each having a spring constant K.

T = Tpm + masses + Trod

rot rot

Note that since the kinetic energy is a scalar quantity it is rotational invariant and thus can be evaluated in
any rotated frame. Thus the kinetic energy of the center of mass is

1 . . .
Ten = §(M +2m) (2% + 9 + 2%)
The rotational kinetic energy of the two masses in the center of mass frame is

Tmasses — m(7? 4 r20° + r2p?sin? 0)

The rotational kinetic energy of the rod TS is a scalar and thus can be evaluated in any rotated frame of

reference fized with respect to the principal axis system of the rod. The angular velocity of the rod about O
resolved along its principal azes is given by
w = @pcoshé, — psinhéy — ééw

The corresponding moments of inertia of the uniform infinitesimally-thin rod are I, = 0,1y = %MZQ, I, =
1—12Ml2, Hence the rotational kinetic energy of the rod is

1 1 .
Ti! = 5 (Iw? + Iow} + Lw?) = ﬂMz?(e2 + ¢?sin?0)

The only potential energy is due to the two extended springs which are assumed to have the same length r
where 1o is the unstretched length.

1
U=2- 5[((’/‘—7‘0)2 =K(r—mrp)?
Thus the Lagrangian is
1 . 1 .
L= §(M +2m) (2% 4 97 + 22) + m(7* + r20° + r2p? sin? 0) + ﬁML2((92 + @?sin?0) — K(r —rg)?

Using Lagrange’s equations Ag, L = 0 for the generalized coordinates gives.
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(M +2m)x = constant (A, L =0)
(M +2m)y = constant (AyL =0)
(M +2m)z = constant (ALL=0)
<2mr2 + %MZQ) ¢sin?@ = constant (A,L =0)
F—T927T§02sin20+£(7"—7’0) = 0 (AL =0)

m

2 . . 2

<r2+%)0+2w’9 <r2+%> ¢*sinfcosd = 0 (AgL = 0)

The first three equations show that the three components of the linear momentum of the center of mass
are constants of motion. The fourth equation shows that the component of the angular momentum about
the z' azis is a constant of motion. Since the z, axis has been arbitrarily chosen then the total angular
momentum must be conserved. The fifth and sizth equations give the radial and angular equations of motion
of the oscillating masses m.

6.9 Applications involving non-holonomic constraints

In general, non-holonomic constraints can be handled by use of generalized forces QfX ¢ in the Lagrange-
Euler equations 6.60. The following examples, 6.16 — 6.19, involve one-sided constraints which exhibit
holonomic behavior for restricted ranges of the constraint surface in coordinate space, and this range is case
specific. When the forces of constraint press the object against the constraint surface, then the system is
holonomic, but the holonomic range of coordinate space is limited to situations where the constraint forces
are positive. When the constraint force is negative, the object flies free from the constraint surface. In
addition, when the frictional force F' > Nyt o1, Where fig.q. is the static coefficient of friction, then the
object slides negating any rolling constraint that assumes static friction.

6.16 Example: Mass sliding on a frictionless spherical shell

Consider a mass starts from rest at the top of a frictionless
fized spherical shell of radius R. The questions are what is the
force of constraint and determine the angle 6 at which the mass
leaves the surface of the spherical shell. The coordinates 7,60 shown
are the obvious generalized coordinates to use. The constraint will
not apply if the force of constraint does not hold the mass against
the surface of the spherical shell, that is, it is only holonomic in a
restricted domain. r

The Lagrangian 1is

L= 1m (7"2 + 7’292) — mgr cos 6
2 Mass m sliding on frictionless cylinder
This Lagrangian is applicable irrespective of whether the constraint of radius R.
is obeyed, where the constraint is given by

g(r,0)=r—R=0

For the restricted domain where this system is holonomic, it can be solved using generalized coordinates,
generalized forces, Lagrange multipliers, or Newtonian mechanics as illustrated below.

Minimal generalized coordinates:

The minimal number of generalized coordinates reduces the system to one coordinate 6, which does not
determine the constraint force that is needed to know if the constraint applies. Thus this approach is not
useful for solving this partially-holonomic system.
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Generalized forces:
The radial constraint has a corresponding generalized force Q... The Lagrange equation A.L = Q, gives

mi* + mg cos 6 — mrl = Q- (a)
The Lagrange equation AgL = Qg = 0 since there is no tangential force for this frictionless system. Therefore
mr20 — mgrsin 0 + 2mrid = 0 (b)

When constrained to follow the surface of the spherical shell, the system is holonomic, i.e. r = R and
7 =17 =0. Thus the above two equations reduce to

mg cos — mRI = Qr (c)
mR%0 — mgRsing = 0
That is
§=ZLsing
R

Integrate to get 0 using the fact that ) _
- dg do éde

T dodt  de
then
/éde - /édé): %/sin&dG
Therefore
2 2
0 = Eg (1 - cosf) (d)

assuming that 0 = 0 at 6 = 0. Substituting equation (d) into equation (c) gives the constraint force, which

is normal to the surface, to be
F=Q, =mg(3cosf — 2)

Note that F = @Q, = 0 when cosf = %, that is 6 = 48.2°.

Lagrange multipliers:

For the holonomic regime, which obeys the constraint, g(r,0) =r — R =0, the Lagrange equation for r
is AL = )\%%. Since %‘TZ =1, then

mi + mgcosf — mrd” = X (a)
The Lagrange equation for 0 gives AgL = )\%% =0 since gg = 0. Thus
mr20 — mgrsin 0 + 2mrid = 0 (b)

As above, when constrained to follow the surface of the spherical shell, the system is holonomic r = R,
and 7 =17 = 0. Thus the above two equations reduce to

mg cosf — mRO: = A (c)
mR*0 —mgRsind = 0 (d)

That is, the answers are identical to that obtained using generalized forces, namely;
-2 2g
0 = —=(1—cosf d
27 (1 cos) (@)

assuming that 0=0ath=0.
The force of constraint applied by the surface is

Jg
F_/\E—/\



6.9. APPLICATIONS INVOLVING NON-HOLONOMIC CONSTRAINTS 153

Substituting equation (d) into equation (c) gives
F=X=mg(3cos —2)

Note that A =0 when cosf = %, that is 0 = 48.2°.

Both of the above methods give identical results and give that the force of constraint is negative when
0 > 48.2°. Assuming that the surface cannot hold the mass against the surface, then the mass will fly off the
spherical shell when 6 > 48.2° and the system reduces to an unconstrained object falling freely in a uniform
gravitational field, which is holonomic, that is Q. = X\ = 0. Then the equations of motion (a) and (b) reduce
to

mi + mgcos — mr)® = 0 (e)

mr20 — mgrsin@ + 2mri = 0 ()

Energy conservation:
This problem can be solved using energy conservation

1
§mv2 = mgR[1 — cos 0|

Thus the centripetal acceleration

02
= 2¢[1 — cos 6]

The normal force to the surface will cancel when the centripetal acceleration equals the gravitational acceler-
ation, that is, when

02
— =2g[1 — cosf] = gcosb
i =y
This occurs when cosf = % This is an unusual case where the Newtonian approach is the simplest.

6.17 Example: Rolling solid sphere on a spherical shell

This is a similar problem to the prior one with the added
complication of rolling which is assumed to move in a vertical
plane making it holonomic. Here we would like to determine
the forces of constraint to see when the solid sphere flies off the
spherical shell and when the friction is insufficient to stop the
rolling sphere from slipping.

The best generalized coordinates are the distance of the center
of the sphere from the center of the spherical shell, v,0 and ¢.
It is important to note that ¢ is measured with respect to the
vertical, not the time-dependent vector r. That is, the direction R
of the radius r is 6 which is time dependent and thus is not a
useful reference to use to define the angle ¢. Let us assume
that the sphere is uniform with a moment of inertia of I =

2ma?. If the tangential frictional force F is less than the limiting  Disk of mass m, radius a, rolling on a
value Npgiqiies, With N > 0, then the sphere will roll without cylindrical surface of radius R.

slipping on the surface of the cylinder and both constraints apply.
Under these conditions the system is holonomic and the solution is solved using Lagrange multipliers and the
equations of constraint are the following:

1) The center of the sphere follows the surface of the cylinder

gi=r—R—-a=0
2) The sphere rolls without slipping

g=a(p—0)—RI=0
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.92 .2
The kinetic energy is T = %m (7‘2 + 720 ) + %Igf) and the potential energy is U = mgr cosf. Thus the
Lagrangian is
1 9 952 1 .2
L= 5m (r + 70 ) + 5](;5 — mgr cos 6
Consider the solution using Lagrange multipliers for the holonomic regime where both constraints are
satisfied and lead to the following differential constraint relations

g1 og1 g1
- = ]_ _— = _— =
or 0¢ 0 00 0
dg2 dg2 dg2
5 = 0 8¢—a 20 — (R+a)
The Lagrange operator equation AL gives,
d OL oL Bgl 892
et Wil £ AT Wit
aor or or or
that is &
mi +mgcosf —mrf =X\ (a)
AgL gives ) _
mr20 + 2mrid — mgrsinf = —X\o (R + a) (b)
Ay L gives
I = aks (c)
Since the center of the sphere rolling on the spherical shell must have
r=R+a
then
Po= =0
6= i
a
Substituting this into (c) gives
2
a
0=—2A\
12
Insert this into equation (b) gives
\ mgr sin 0
2 =

(r+ 257)

The moment of inertia about the axis of a solid sphere is I = %maQ. Then

2mg sin 0
Ay = QT
But also , )
s od0 a 5 _ bgsind
0_0@ N TI/\Q_ 2mr>\2_ r
Integrating gives
/M:@/m%
r
That is 10
0 = = (1 —cosf)

assuming that 0=0ath=0. Inserting this into equation (a) gives

1
—mr% [1 —cosf] +mgcost = A\
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That s m
A= 79 [17 cos € — 10]

Note that this equals zero when

10
cosb = T

For larger angles \1 is negative implying that the solid sphere will fly off the surface of the spherical shell.

The sphere will leave the surface of the cylinder when cos = }—g that is, 8 = 53.97°. This is a significantly
larger angle than obtained for the similar problem where the mass is sliding on a frictionless cylinder because
the energy stored in rotation implies that the linear velocity of the mass is lower at a given angle 6 for the
case of a rolling sphere.

The above discussion has omitted an important fact that, if figu5. < 00, the frictional force becomes
insufficient to maintain the rolling constraint before 6 = 53.97°, that is, the frictional force will exceed
the sliding limit Niig,... To determine when the rolling constraint fails it is necessary to determine the

frictional torque
FrR=—-)\R

Thus
Ff =—X

It is in the negative direction because of the direction chosen for ¢. The required coefficient of friction p is
given by the ratio of the frictional force to the normal force, that is

_&_ 2sin 6
F= N~ [7cosd — 10]

For u = 1 the disk starts to slip when 0 = 47.54°. Note that the sphere starts slipping before it flies off
the cylinder since a normal force is required to support a frictional force and the difference depends on the
coefficient of friction. The no-slipping constraint is not satisfied once the sphere starts slipping and the
frictional force should equal pinericM1- Thus for the angles beyond 47.54° the problem needs to be solved with
the rolling constraint changed to a sliding non-conservative frictional force. This is best handled by including
the frictional force and normal forces as generalized forces. Fortunately this will be a small correction. The
friction will slightly change the exact angle at which the normal force becomes zero and the system transitions
to free motion of the sphere in a gravitational field.

6.18 Example: Solid sphere rolling plus slipping on a spherical shell

Consider the above case when the frictional force is insufficient to constrain the motion to rolling. Now
the frictional force F is given by
F= Nusliding

when N is positive.
This can be solved using generalized forces with the previous Lagrangian. Then

d oL 0L
_— = =N
dt or  Or @
which gives
mi + mgcosf — mréQ =N

Similarly AgL = Q9 = —F (R + a) gives
mr?0 4+ 2mrid — mgrsin® = —F (R + a)

Similarly AyL = Qg = aF gives
I =aF
These can be solved by substituting the relation F' = Npg;q4,n,- The sphere flies off the spherical shell

when N <0 leading to free motion discussed in example 6.2. The problem of a solid uniform sphere rolling
inside a hollow sphere can be solved the same way.
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6.19 Example: Small body held by friction on the periphery of a rolling wheel

Assume that a small body of mass m is bal-
anced on a rolling wheel of mass M and radius
R as shown in the figure. The wheel rolls in y
a vertical plane without slipping on a horizontal
surface. This example illustrates that it is possi-
ble to use simultaneously a mizture of holonomic
constraints, partially-holonomic constraints, and
generalized forces.

Assume that at t = 0 the wheel touches the
floor at x = y = 0 with the mass perched at
the top of the wheel at x = 0. Let the frictional
force acting on the mass m be F and the reaction
force of the periphery of the wheel on the mass
be N. Let ¢ be the angular velocity of the wheel,
and & the horizontal velocity of the center of the
wheel. The polar coordinates r,0 of the mass m o X
are taken with v measured from the center of the
wheel with 6 measured with respect to the vertical.
Thus the cartesian coordinates of the small mass Small body of mass m held by friction on the periphery
m are (x +rsinf, R+ rcosf) with respect to the of a rolling wheel of mass M and radius R.
origin at x =y = 0.

The kinetic energy is given by

T= 1Ma':2—|—llg'02 —|—1m (:’B+r9c059+7'"sin9)2—|— (fcosQ—résin@)Q
2 2 2

The gravitational force can be absorbed into the scalar potential term of the Lagrangian and includes only
the potential energy of the mass m since the potential energy of the rolling wheel is constant.

U=+mg(R+rcos)

Thus the Lagrangian is

1 1 1 p ;
L= 3 (M 4 m)i* + 5[9&72 + 5m [r292 +2ra'c900s9+2§cr'sin9+r'2} —mg (R +rcosf)

The equations of constraints are:
1) The wheel rolls without slipping on the ground plane leading to a holonomic constraint:

gi=x—Rp=2—Rp=0

2) The mass m is touching the periphery of the wheel, that is, the normal force N > 0. This is a one-sided
restricted holonomic constraint.

g=R—-—r=0

3) The mass m does not slip on the wheel if the frictional force F' < Npgaeic- When this restricted
holonomic constraint is satisfied, then
g3=0-9=0

The rolling constraint is holonomic, and can be accounted for using one Lagrange multiplier A\, plus the
differential constraint equations

3This problem is solved in detail in example 3.19 of " Classical Mechanics and Relativity". by Muller-Kirsten [Mu06].
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991
oz
9 _
00
991
e
991
or
The other two constraints are non-holonomic, and thus these constraint forces are expressed in terms of two
generalized forces Qg, and @, that are related to the tangential force F' and radial reaction force N. For
simplicity, assume that the wheel is a thin-walled cylinder with a moment of inertia of

I=MR?

The Fuler-Lagrange equations for the four coordinates x,0,p,r are

—% ((M—I—m)a'v—l—mr@cos9+7"sin9)—&—)\z—&—Qw =0 (Az)

mri6 sin @ + i7 cos § — mgrsin 6 — % (mrQQ + mri cos 9) +Qy = 0 (Ap)
d .

= (MR*¢) — R\, = 0 (Ayp)

—mgcosf — %(mx sinf+7)+Q, = 0 (A)

The generalized forces can be related to F' and N using the definition
or
= F -—_—
qu (7’) 8%

where F(r) is the vectorial sum of the forces acting at r. The components of vector r = (x + rsinf, R + r cos )
and F, and N are in the directions defined in the figure which leads to the generalized forces

Q. = —Fcosf+ Nsinf
Qo = (—Fcosf+ Nsinf)(—Rcosf) — (Fsinf + Ncosf) Rsinf = —FR
Qr = N

Solving the above T equations gives that
mi sin 6 + mR@2 —mgcosf+ N =0

This last equation can be derived by Newtonian mechanics from consideration of the forces acting.

The above equations of motion can be used to calculate the motion for the following conditions.

a) Mass not slipping:

This occurs if p = % < gtaric Which also implies that N > 0, That is a situation where the system is
holonomic with r = R, © = R, 0 = @ which can be solved using the generalized coordinate approach with
only one independent coordinate which can be taken to be 6.

b) Mass slipping:

Here the no-slip constraint is violated and thus one has to explicitly include the generalized forces @, Qy,, Qo
and assume that sliding friction is given by F'= Ny, q:,q-

¢) Reaction force N is negative:

Here the mass is not subject to any constraints and it is in free fall.

The above example illustrates the flexibility provided by Lagrangian mechanics that allows simultane-
ous use of Lagrange multipliers, generalized forces, and scalar potential to handle combinations of several
holonomic and nonholonomic constraints for a complicated problem.
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6.10 Velocity-dependent Lorentz force

The Lorentz force in electromagnetism is unusual in that it is a velocity-dependent force, as well as being a
conservative force that can be treated using the concept of potential. That is, the Lorentz force is

F=¢E+vxB) (6.61)

It is interesting to use Maxwell’s equations and Lagrangian mechanics to show that the Lorentz force can be
represented by a conservative potential in Lagrangian mechanics.
Maxwell’s equations can be written as

VE =2 (6.62)
€o
0B
E+— = 0
V x +8t
V-B =
OE
B—pgco— = J
V x Hogo

Since V - B =0 then it follows from Appendix H that B can be represented by the curl of a vector
potential, A, that is
B=VxA (6.63)

Substituting this into V x E"’%_}? = 0 gives that

A
v VXA (6.64)
ot
0A
Vx| E+—) = 0
X ( + o )
Since this curl is zero it can be represented by the gradient of a scalar potential U
A
E+ 68_15 =-VU (6.65)

The following shows that this relation corresponds to taking the gradient of a potential U for the charge ¢
where the potential U is given by the relation

U=q(®—-A- v) (6.66)
where ® is the scalar electrostatic potential. This scalar potential U can be employed in the Lagrange
equations using the Lagrangian

1

L:gmv~v—q((l>—A-v) (6.67)

The Lorentz force can be derived from this Lagrangian by considering the Lagrange equation for the cartesian
coordinate z

d oL 8L
S-S =0 (6.68)

Using the above Lagrangian (6.67) gives
dA, 09 O0A

But dA, 0A, 0A, 0A, 0A
7 - o + 8x$+ 8yy+ 9, - (6.70)
and

—v= j:+a Lo+ % (6.71)
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Inserting equations 6.70 and 6.71 into 6.69 gives

L _8_<I>_E)Aw aAy_aAI - aAI_aAZ J
Fx—mx—q[( 5o 5‘t>+<31’ 8y)y (5‘2 az)z]—q[E—&—va]m (6.72)

Corresponding expressions can be obtained for F, and F,. Thus the total force is the well-known Lorentz
force

F=¢E+vxB) (6.73)

This has demonstrated that the electromagnetic scalar potential
U=q(®—-—A-v) (6.74)

satisfies Maxwell’s equations, gives the Lorentz force, and it can be absorbed into the Lagrangian. Note that
the velocity-dependent Lorentz force is conservative since E is conservative, and because (v x B x v)dt=0,
therefore the magnetic force does no work since it is perpendicular to the trajectory. The velocity-dependent
conservative Lorentz force is an important and ubiquitous force that features prominently in many branches
of science. It will be discussed further for the case of relativistic motion in example 17.6.

6.11 Time-dependent forces

All examples discussed in this chapter have assumed Lagrangians that are time independent. Mathematical
systems where the ordinary differential equations do not depend explicitly on the independent variable, which
in this case is time ¢, are called autonomous systems. Systems having differential equations governing the
dynamical behavior that have time-dependent coefficients are called non-autonomous systems.

In principle it is trivial to incorporate time-dependent behavior into the equations of motion by intro-
ducing either a time dependent generalized force Q(r,t), or allowing the Lagrangian to be time dependent.
For example, in the rocket problem the mass is time dependent. In some cases the time dependent forces
can be represented by a time-dependent potential energy rather than using a generalized force. Solutions
for non-autonomous systems can be considerably more difficult to obtain, and can involve regions where the
motion is stable and other regions where the motion is unstable or chaotic similar to the behavior discussed
in chapter 4. The following case of a simple pendulum, whose support is undergoing vertical oscillatory
motion, illustrates the complexities that can occur for systems involving time-dependent forces.

6.20 Example: Plane pendulum hanging from a vertically-oscillating support

Consider a plane pendulum having a mass M fastened to a massless rigid rod of length L that is at an
angle 0(t) to the vertical gravitational field g. The pendulum is attached to a support that is subject to a
vertical oscillatory force F' such that the vertical position y of the support is

y = Acoswt
The kinetic energy is
1 . 2 . . 9 1 952 N .2
T = §M (LQCOSQ) + (g+ LOsing)*| = §M {L 0 +2L6ysinf + vy
and the potential energy is
U= Mg[L(1—cosf) +y]
Thus the Lagrangian is

L= %M [LZQQ +2L0ysin 6 + y'z] — Mg[L(1 - cosf) + v

The Euler-Lagrange equations lead to equations of motion for 6 and y

ML?0 + MLijjsin0 + MgLsinf = 0
Mlésin0+ML92cost9+ij+Mg = F
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Assume the small-angle approzimation where 0 — 0, then these two equations reduce to

0 Z4+=1]6 =
+(4+2)0 = o
. F
yt+g = i
Substitute jj = —Aw? coswt into these equations gives
; Aw?
9+<%—Twcoswt>9 = 0
M (g — Aw? cos wt) = F

These correspond to stable harmonic oscillations about 0 ~ 0 if the bracket term is positive, and to
unstable motion if the bracket is negative. Thus, for small amplitude oscillation about 6 ~ 0 the motion of
the system can be unstable whenever the bracket is negative, that is, when the acceleration Aw? coswt > g
and resonance behavior can occur coupling the pendulum period and the forcing frequency w.

This discussion also applies to the inverted pendulum with a surprising result. It is well known that the
pendulum is unstable near 0 = w. However, if the support is oscillating, then for 6 ~ w the equations of

motion become
- g Aw? .
0 < 7 T Cos wt) 0

m (g — Aw? coswt) = F

0

The inverted pendulum has stable oscillations about 0 ~ 7 if the bracket is negative, that is, if Aw? coswt > g.
This illustrates that nonautonomous dynamical systems can involve either stable or unstable motion.

6.12 Impulsive forces

Colliding bodies often involve large impulsive forces that act for a short time. As discussed in chapter 2.12.8,
the treatment of impulsive forces or torques is greatly simplified if they act for a sufficiently short time that
the displacement during the impact can be ignored, even though the instantaneous change in velocities may
be large. The simplicity is achieved by taking the time integral of the Euler-Lagrange equations over the
duration 7 of the impulse and assuming 7 — 0.

The impact of the impulse on a system can be handled two ways. The first approach is to use the
Euler-Lagrange equation during the impulse to determine the equations of motion

d (OL\ 0L _ sexc

where the impulsive force is introduced using the generalized force QfX ¢. Knowing the initial conditions at
time t, the conditions at the time ¢ + 7 are given by integration of equation 6.75 over the duration 7 of the

impulse which gives
t+1 d <8L) t+1 aL t+1
— (= )dr - / —dr = QFXCdr 6.76
/t dt \ 0q; ¢ 0g; ¢ ! (6.76)

This integration determines the conditions at time ¢ + 7 which then are used as the initial conditions for the
motion when the impulsive force Q]EX ¢ is zero.
The second approach is to realize that equation 6.76 can be rewritten in the form

T d (0L oL "7 T 0L
li — (=) dt = lim — = Ap; = li BXC) g 6.77
[ () o [ () o) o
oL

=0 J4 8_(]]
Note that in the limit that 7 — 0 then the integral of the generalized momentum p; = e simplifies to give

the change in generalized momentum Ap;. In addition, assuming that the non-impulsive forces (g—(f) are
J
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finite and independent of the instantaneous impulsive force during the infinitessimal duration 7, then the

contribution of the non-impulsive forces |, and

t
large impulsive force term; lim,_q ftt+T Qfx Cdr. Thus it can be assumed that

(g—tf_) dr during the impulse can be neglected relative to the
J

t+7

Ap; = lim QFXCdr = Q; (6.78)
70 J;
where Qj is the generalized impulse associated with coordinate j = 1,2,3,....,n. This generalized impulse

can be derived from the time integral of the impulsive forces P; given by equation 2.135 using the time
integral of equation 6.77, that is

B t4+1 t+7 or; - or;:

Note that the generalized impulse Qj can be a translational impulse 15j with corresponding translational
variable g;, or an angular impulsive torque 7; with corresponding angular variable ¢,.

Impulsive force problems usually are solved in two stages. KEither equations 6.76 or 6.79 are used to
determine the conditions of the system immediately following the impulse. If 7 — 0 then impulse changes
the generalized velocities ¢; but not the generalized coordinates ¢;. The subsequent motion then is determined
using the Lagrangian equations of motion with the impulsive generalized force being zero, and assuming that
the initial condition corresponds to the result of the impulse calculation.

6.13 The Lagrangian versus the Newtonian approach to classical
mechanics

It is useful to contrast the differences, and relative advantages, of the Newtonian and Lagrangian formulations
of classical mechanics. The Newtonian force-momentum formulation is vectorial in nature, it has cause and
effect embedded in it. The Lagrangian approach is cast in terms of kinetic and potential energies which involve
only scalar functions and the equations of motion come from a single scalar function, i.e. Lagrangian. The
directional properties of the equations of motion come from the requirement that the trajectory is specified
by the principle of least action. The directional properties of the vectors in the Newtonian approach assist
in our intuition when setting up a problem, but the Lagrangian method is simpler mathematically when the
mechanical system is more complex.

The major advantage of the variational approaches to mechanics is that solution of the dynamical equa-
tions of motion can be simplified by expressing the motion in terms of independent generalized coordi-
nates. For Lagrangian mechanics these generalized coordinates can be any set of independent variables,
qi, where 1 < ¢ < n, plus the corresponding velocities ¢;. These independent generalized coordinates
completely specify the scalar potential and kinetic energies used in the Lagrangian or Hamiltonian. The
variational approach allows for a much larger arsenal of possible generalized coordinates than the typical
vector coordinates used in Newtonian mechanics. For example, the generalized coordinates can be dimension-
less amplitudes for the N normal modes of coupled oscillator systems, or action-angle variables. Moreover,
very different generalized coordinates can be used for each of the n variables. The tremendous freedom
plus flexibility of the choice of generalized coordinates is important when constraint forces are acting on the
system. Generalized coordinates allow the constraint forces to be ignored by including auxiliary conditions
to account for the kinematic constraints that lead to correlated motion. The Lagrange method provides
an incredibly consistent and mechanistic problem-solving strategy for many-body systems subject to con-
straints. Expressed in terms of generalized coordinates, the Lagrange’s equations can be applied to a wide
variety of physical problems including those involving fields. The manipulation of scalar quantities in a
configuration space of generalized coordinates can greatly simplify problems compared with being confined
to a rigid orthogonal coordinate system characterized by the Newtonian vector approach.

The use of generalized coordinates in Lagrange’s equations of motion can be applied to a wide range
of physical phenomena including field theory, such as for electromagnetic fields, which are beyond the ap-
plicability of Newton’s equations of motion. The superiority of the Lagrangian approach compared to the
Newtonian approach for solving problems in mechanics is apparent when dealing with holonomic constraint
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forces. Constraint forces must be known and included explicitly in the Newtonian equations of motion. Un-
fortunately, knowledge of the equations of motion is required to derive these constraint forces. For holonomic
constrained systems, the equations of motion can be solved directly without calculating the constraint forces
using the minimal set of generalized coordinate approach to Lagrangian mechanics. Moreover, the Lagrange
approach has significant philosophical advantages compared to the Newtonian approach.

6.14 Summary

Newtonian plausibility argument for Lagrangian mechanics:

A justification for introducing the calculus of variations to classical mechanics becomes apparent when
the concept of the Lagrangian L = T — U is used in the functional and time ¢ is the independent variable.
It was shown that Newton’s equation of motion can be rewritten as

dOL 0L .y
dt 0q¢;  0q; %

(6.12)
where F, ]”;X are the excluded forces of constraint plus any other conservative or non-conservative forces not
included in the potential U. This corresponds to the Euler-Lagrange equation for determining the minimum
of the time integral of the Lagrangian. Equation 6.12 can be written as

d oL 0L & A9k pxC
—— ==Y LI o 1
dt 0q;  Og; & 2 ) 0q; T (6.15)

where the Lagrange multiplier term accounts for holonomic constraint forces, and includes all ad-
ditional forces not accounted for by the scalar potential U, or the Lagrange multiplier terms Fqu C. The
constraint forces can be included explicitly as generalized forces in the excluded term F(fX ¢ of equation
6.15.

d’Alembert’s Principle

It was shown that d’Alembert’s Principle

EXC
F‘Zi

N
Z(F? —Pi)-or; =0 (6.25)
1
cleverly transforms the principle of virtual work from the realm of statics to dynamics. Application of virtual
work to statics primarily leads to algebraic equations between the forces, whereas d’Alembert’s principle
applied to dynamics leads to differential equations of motion.
Lagrange equations from d’Alembert’s Principle
After transforming to generalized coordinates, d’Alembert’s Principle leads to

£ ({2 (2)-2)-o]ou-

If all the n generalized coordinates ¢; are independent, then equation 6.38 implies that the term in the square
brackets is zero for each individual value of j. That is, this implies the basic Euler-Lagrange equations of
motion.

The handling of both conservative and non-conservative generalized forces @); is best achieved by assuming
that the generalized force Q; = Z? Ff‘- gg;’ can be partitioned into a conservative velocity-independent term,

that can be expressed in terms of the gradient of a scalar potential, —VU;, plus an excluded generalized force
QJEX which contains the non-conservative, velocity-dependent, and all the constraint forces not explicitly
included in the potential U;. That is,

Qj=-VU; + Q¥ (6.41)

Inserting (6.41) into (6.38), and assuming that the potential U is velocity independent, allows (6.38) to be

rewritten as > { { % <3(g ;j U)) - 3(7;} qu U) } B Q]EX} 545 = 0 (6.42)
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Expressed in terms of the standard Lagrangian L =T — U this gives

iv: H% (%) - g_qu} - Qfx} dg; =0 (6.44)

Note that equation (6.44) contains the basic Euler-Lagrange equation (6.38) for the special case when
U = 0. In addition, note that if all the generalized coordinates are independent, then the square bracket
terms are zero for each value of j, which leads to the n general Euler-Lagrange equations of motion

d (0L oL BX
laler) 5 )¢ (64
where n > 7 > 1.

Newtonian mechanics has trouble handling constraint forces because they lead to coupling of the degrees
of freedom. Lagrangian mechanics is more powerful since it provides the following three ways to handle such
correlated motion.

1) Minimal set of generalized coordinates

If the n coordinates ¢; are independent, then the square bracket equals zero for each value of j in equation
6.44, which corresponds to Euler’s equation for each of the n independent coordinates. If the n generalized
coordinates are coupled by m constraints, then the coordinates can be transformed to a minimal set of
s = n — m independent coordinates which then can be solved by applying equation 6.45 to the minimal set
of s independent coordinates.

2) Lagrange multipliers approach

The Lagrangian method concentrates solely on active forces, completely ignoring all other internal forces.
In Lagrangian mechanics the generalized forces, corresponding to each generalized coordinate, can be parti-
tioned three ways

m
gk C
Qj=-VU+> s -(at) + Q7"
k=1 J
where the velocity-independent conservative forces can be absorbed into a scalar potential U, the holonomic
constraint forces can be handled using the Lagrange multiplier term ), , /\kgiqjj(q, t), and the remaining

part of the active forces can be absorbed into the generalized force QJEX C. The scalar potential energy U is

handled by absorbing it into the standard Lagrangian L = T'— U. If the constraint forces are holonomic then

these forces are easily and elegantly handled by use of Lagrange multipliers. All remaining forces, including

dissipative forces, can be handled by including them explicitly in the the generalized force QF*©.
Combining the above two equations gives

N
d (oL oL EXC 5gk
; l{dt (aqj) dq; } @ ZA g, (& t)| dg; =0 (6.56)

Use of the Lagrange multipliers to handle the m constraint forces ensures that all n infinitessimals dg; are
independent implying that the expression in the square bracket must be zero for each of the n values of j.
This leads to n Lagrange equations plus m constraint relations

i 8_L oL EXC 99k
&5 -5} - +Zxkaq] (a.1) (6.60)

where 7 =1,2,3,...n.

3) Generalized forces approach

The two right-hand terms in (6.60) can be understood to be those forces acting on the system that are
not absorbed into the scalar potential U component of the Lagrangian L. The Lagrange multiplier terms
Sy /\kgiq:‘(q, t) account for the holonomic forces of constraint that are not included in the conservative

potential or in the generalized forces Q]EX €. The generalized force

or;
QFXC = ZFA 94, (6.17)

7
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is the sum of the components in the g; direction for all external forces that have not been taken into account
by the scalar potential or the Lagrange multipliers. Thus the non-conservative generalized force Q]-EX ¢
contains non-holonomic constraint forces, including dissipative forces such as drag or friction, that are not
included in U, or used in the Lagrange multiplier terms to account for the holonomic constraint forces.
Applying the Euler-Lagrange equations in mechanics:
The optimal way to exploit Lagrangian mechanics is as follows:

1. Select a set of independent generalized coordinates.

2. Partition the active forces into three groups:

(a) Conservative one-body forces
(b) Holonomic constraint forces

(c¢) Generalized forces

3. Minimize the number of generalized coordinates.
4. Derive the Lagrangian

5. Derive the equations of motion

Velocity-dependent Lorentz force:

Usually velocity-dependent forces are non-holonomic. However, electromagnetism is a special case where
the velocity-dependent Lorentz force F = ¢(E+v x B) can be obtained from a velocity-dependent potential
function U(q, q,t). It was shown that the velocity-dependent potential

U=qP—qv-A (6.74)

leads to the Lorentz force where ® is the scalar electric potential and A the vector potential.

Time-dependent forces:

It was shown that time-dependent forces can lead to complicated motion having both stable regions and
unstable regions of motion that can exhibit chaos.

Impulsive forces:

A generalized impulse Qj can be derived for an instantaneous impulsive force from the time integral of
the impulsive forces P; given by equation 2.135 using the time integral of equation 6.78, that is

_ t+7 t+1 o
Ap; =Q; = ;%/t QfXCdT = lim ZFl '3

T—0 J,

~ (’)ri
dr = Z P, 5, (6.79)

r;
4q;

Note that the generalized impulse Qj can be a translational impulse f’j with corresponding translational
variable ¢; or an angular impulsive torque ’i‘j with corresponding angular variable ¢;.

Comparison of Newtonian and Lagrangian mechanics:

In contrast to Newtonian mechanics, which is based on knowing all the vector forces acting on a system,
Lagrangian mechanics can derive the equations of motion using generalized coordinates without requiring
knowledge of the constraint forces acting on the system. Lagrangian mechanics provides a remarkably
powerful, and incredibly consistent approach to solving for the equations of motion in classical mechanics,
and is especially powerful for handling systems that are subject to holonomic constraints.



Chapter 7

Symmetries, Invariance and the
Hamiltonian

7.1 Introduction

The chapter 7 discussion of Lagrangian dynamics illustrates the power of Lagrangian mechanics for deriving
the equations of motion. In contrast to Newtonian mechanics, which is expressed in terms of force vectors
acting on a system, the Lagrangian method, based on d’Alembert’s Principle or Hamilton’s Principle, is
expressed in terms of the scalar kinetic and potential energies of the system. The Lagrangian approach is a
sophisticated alternative to Newton’s laws of motion, that provides a simpler derivation of the equations of
motion that allows constraint forces to be ignored. In addition, the use of Lagrange multipliers or generalized
forces allows the Lagrangian approach to determine the constraint forces when these forces are of interest.
The equations of motion, derived either from Newton’s Laws or Lagrangian dynamics, can be non-trivial to
solve mathematically. It is necessary to integrate second-order differential equations, which for n degrees of
freedom, imply 2n constants of integration.

Chapter 7 will explore the remarkable connection between symmetry and invariance of a system under
transformation, and the related conservation laws that imply the existence of constants of motion. Even
when the equations of motion cannot be solved easily, it is possible to derive important physical principles
regarding the first-order integrals of motion of the system directly from the Lagrange equation, as well as for
elucidating the underlying symmetries plus invariance. This property is contained in Noether’s theorem
which states that conservation laws are associated with differentiable symmetries of a physical system.

7.2 Generalized momentum

Consider a holonomic system of N masses under the influence of conservative forces that depend on position
g; but not velocity ¢;, that is, the potential is velocity independent. Then for the x coordinate of particle ¢
for N particles

oL or ou 0T

= —_ = 7.1
04 ot; O0x; 0y (1)
N
0 1 .9 .9 .2
= ; 5 (&7 + 97 + 27)
= MuT; = Pix
Thus for a holonomic, conservative, velocity-independent potential we have
oL
o1, = Pix (7.2)

which is the = component of the linear momentum for the " particle.

165
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This result suggests an obvious extension of the concept of momentum to generalized coordinates. The
generalized momentum associated with the coordinate g; is defined to be

oL

94, pj (7.3)
Note that p; also is called the conjugate momentum or canonical momentum to g; where g;,p; are
conjugate, or canonical, variables. Remember that the linear momentum p; is the first-order time integral
given by equation 2.10. If g; is not a spatial coordinate, then p; is the generalized momentum, not the
kinematic linear momentum. For example, if g; is an angle, then p; will be angular momentum. That
is, the generalized momentum may differ from the usual linear or angular momentum since the definition
(7.3) is more general than the usual p, = ma definition of linear momentum in classical mechanics. This is
illustrated by the case of a moving charged particles m;,e; in an electromagnetic field. Chapter 6 showed
that electromagnetic forces on a charge e; can be described in terms of a scalar potential U; where

Uj=¢;(®—A-vy) (7.4)

Thus the Lagrangian for the electromagnetic force can be written as

N
1
L:; Emjvj v —ej(®—A-vy) (7.5)

The generalized momentum to the coordinate x; for charge e;, and mass m;, is given by the above Lagrangian

oL .
Pjaz = a_.’L‘j =m;x; + eij (76)

Note that this includes both the mechanical linear momentum plus the correct electromagnetic momentum.
The fact that the electromagnetic field carries momentum should not be a surprise since electromagnetic
waves also carry energy as is illustrated by the transmission of radiant energy from the sun.

7.1 Example: Feynman’s angular-momentum paradox

Feynman/[Fey84] posed the following paradoz. A circular insulating disk, mounted on frictionless bearings,
has a circular ring of total charge q uniformly distributed around the perimeter of the circular disk at the
radius R. A superconducting long solenoid of radius s, where s < R, is fized to the disk and is mounted
coazial with the bearings. The moment of inertia of the system about the rotation axis is I. Initially the disk
plus superconducting solenoid are stationary with a steady current producing a uniform magnetic field By
inside the solenoid. Assume that a rise in temperature of the solenoid destroys the superconductivity leading
to a rapid dissipation of the electric current and resultant magnetic field. Assume that the system is free to
rotate, no other forces or torques are acting on the system, and that the charge carriers in the solenoid have
zero mass and thus do mot contribute to the angular momentum. Does the system rotate when the current in
the solenoid stops?

Initially the system is stationary with zero mechanical angu-
lar momentum. Faraday’s Law states that, when the magnetic
field dissipates from By to zero, there will be a torque N acting
on the circumferential charge q at radius R due to the change
in magnetic fluz .

SUPERCONDUCTING
COIL

do
N(t) = —qR—
(t) = —qR—
Since % < 0, this torque leads to an angular impulse which

will equal the final mechanical angular momentum.

Uniform surface

LMECH —T = /N(t)dt — qR{) charge q
t

final
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The initial angular momentum in the electromagnetic field can be derived using equation 7.6, plus Stoke’s
theorem, Equation 2.142 gives that the final angular momentum equals the angular impulse

LEM.  — /}{rp(ﬁdldt jl{rp¢dl = qRy{Aqul = qR/B -dS =qR®

where ® = %Agﬁdl = /B -dS is the initial total magnetic flux through the solenoid. Thus the total initial

angular momentum s given by
LIOTAL — 0+ LE

initial

=qR®

znztzal

Since the final electromagnetic field is zero the final total angular momentum is given by

OTAL MECH

Lioett =Ly +0 = qR®
Note that the total angular momentum is conserved. That is, initially all the angular momentum is stored in
the electromagnetic field, whereas the final angular momentum is all mechanical. This explains the paradoz
that the mechanical angular momentum is not conserved, only the total angular momentum of the system is
conserved, that is, the sum of the mechanical and electromagnetic angular momenta.

7.3 Invariant transformations and Noether’s Theorem

One of the great advantages of Lagrangian mechanics is the freedom it allows in choice of generalized
coordinates which can simplify derivation of the equations of motion. For example, for any set of coordinates,
g;, a reversible point transformation can define another set of coordinates q} such that

4 = q;(q1, 92, --qn; 1) (7.7)

The new set of generalized coordinates satisfies Lagrange’s equations of motion with the new Lagrangian

L(q',q't) = L(g,4,t) (7.8)

The Lagrangian is a scalar, with units of energy, which does not change if the coordinate representa-
tion is changed. Thus L(q¢’,¢’,t) can be derived from L(q,q,t) by substituting the inverse relation ¢; =
qi(q4, db, --q);t) into L(q,q,t). That is, the value of the Lagrangian L is independent of which coordinate
representation is used. Although the general form of Lagrange’s equations of motion is preserved in any
point transformation, the explicit equations of motion for the new variables usually look different from those
with the old variables. A typical example is the transformation from cartesian to spherical coordinates. For
a given system, there can be particular transformations for which the explicit equations of motion are the
same for both the old and new variables. Transformations for which the equations of motion are invariant,
are called invariant transformations. It will be shown that if the Lagrangian does not explicitly contain
a particular coordinate of displacement g;, then the corresponding conjugate momentum, p;, is conserved.
This relation is called Noether’s theorem which states “For each symmetry of the Lagrangian, there is a
conserved quantity”.

Noether’s Theorem will be used to consider invariant transformations for two dependent variables, x(t),
and 6(t), plus their conjugate momenta p, and py. For a closed system, these provide up to six possible
conservation laws for the three axes. Then we will discuss the independent variable ¢, and its relation to
the Generalized Energy Theorem, which provides another possible conservation law. For simplicity, these
discussions will assume that the systems are holonomic and conservative.

The Lagrange equations using generalized coordinates for holonomic systems, was given by equation 6.60

to be
d (oL % BXC
{dt (aq'j) 8%} S G+ (79)

k=1

This can be written in terms of the generalized momentum as

d _ (’)gk EXC
{dtpj } ;)\k (a,t) + Qf (7.10)
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or equivalently as
. 0L . Ogi
bi=g-+ [Z /\ka—q_(% t)+ QfXC] (7.11)
J k=1 J

Note that if the Lagrangian L does not contain g; explicitly, that is, the Lagrangian is invariant to a linear
translation, or equivalently, is spatially homogeneous, and if the Lagrange multiplier constraint force and
generalized force terms are zero, then

oL,
8(]j

U
Y M (q,t) +QFXC| =0 (7.12)
= 94

In this case the Lagrange equation reduces to

_dy,
Pi="at

Equation 7.13 corresponds to p; being a constant of motion. Stated in words, the generalized momentum p;
is a constant of motion if the Lagrangian is invariant to a spatial translation of q;, and the constraint plus
generalized force terms are zero. Expressed another way, if the Lagrangian does not contain a given coordi-
nate ¢; and the corresponding constraint plus generalized forces are zero, then the generalized momentum
associated with this coordinate is conserved. Note that this example of Noether’s theorem applies to any
component of q. For example, in the uniform gravitational field at the surface of the earth, the Lagrangian
does not depend on the x and y coordinates in the horizontal plane, thus p, and p, are conserved, whereas,
due to the gravitational force, the Lagrangian does depend on the vertical z axis and thus p, is not conserved.

=0 (7.13)

7.2 Example: Atwoods machine

Assume that the linear momentum is conserved for the Atwood’s machine shown in the figure below. Let
the left mass rise a distance x and the rTight mass rise a distance y. Then the middle mass must drop by
T 4y to conserve the length of the string. The Lagrangian of the system is

1 1 1 7
L= 5(4m)dv2—|—§(3m)(—a'c—y)2—|—§my2—(4mgx +3mg(—x — y) + mgy) = §m:ic2—|—3mx'y+2my2—mg(x—2y)

Note that the transformation

T = xo+2¢ 7 ]

Yy = YoTte

results in the potential energy term mg(z—2y) = mg(xo—2yo)
which is a constant of motion. As a result the Lagrangian

is independent of €, which means that it is invariant to the

small perturbation e, and thus % = 0. Therefore, accord- LL Jy
ing to Noether’s theorem, the corresponding linear momen- o s "

tum P, = % is conserved. This conserved linear momentum Example of an Atwood’s machine

then is given by
p dL _0LOx OLOy _

T N T m(7z + 3y)(2) + m(3¢ + 49) = m(17z + 109)

Thus, if the system starts at rest with P, = 0, then & always equals f}—‘;y since P, is constant.
Note that this also can be shown using the Euler-Lagrange equations in that AyL =0 and AyL =0 give

"mi+3my = —mg
3mz +4my = 2mg

Adding the second equation to twice the first gives
d
17m& + 10my = E(l?mi +10my) =0

This is the result obtained directly using Noether’s theorem.
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7.4 Rotational invariance and conservation of angular momentum

The arguments, used above, apply equally well to conjugate momenta py and 6 for rotation about any axis.
The Lagrange equation is

{%pe } Z >\k agk )+ QEXC (7.14)

If no constraint or generalized torques act on the system, then the right hand side of equation 7.14 is zero.
Moreover if the Lagrangian in not an explicit function of @, then 2 W = 0, and assuming that the constraint
plus generalized torques are zero, then py is a constant of motion.

Noether’s Theorem illustrates this general result which can be stated as, if the Lagrangian is rotationally
imvariant about some axis, then the component of the angular momentum along that axis is conserved. Also
this is true for the more general case where the Lagrangian is invariant to rotation about any axis, which
leads to conservation of the total angular momentum.

7.3 Example: Conservation of angular momentum for rotational invariance:

The Noether theorem result for rotational-invariance about an
azis also can be derived using cartesian coordinates as shown below.
As discussed in appendiz D, it is necessary to limit discussion of
rotation to infinitessimal rotation angles in order to represent the 30
rotation by a vector. Consider an infinitessimal rotation 00 about \
some axis, which is a vector. As illustrated in the adjacent figure,
this can be expressed as 50

or =00 xr or

The velocity vectors also change on rotation of the system obeying
the transformation equation which is common to all vectors, that
18, r

0 =90 X 1

r + or

If the Lagrangian is unaffected by the orientation of the system,
that is, it is rotationally invariant, then it can be shown that the
angular momentum is conserved. For example, consider that the
Lagrangian is invariant to rotation about some azxis q;. Since the
Lagrangian is a function

Infinitessimal rotation

then the expression that the Lagrangian does not change due to an infinitesimal rotation 60 about this axis
can be expressed as

oL =

(4)

where cartesian coordinates have been used.
Using the generalized momentum

oL
oi;
then, Lagrange’s equation gives
d oL 0
dtpz 8.731'
that is
_ 0L
Di oz

Inserting this into equation A gives
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This is equivalent to the scalar products
p-ér+p-dr=0

For an infinitessimal rotation 00,then or = 00 x r and 67 = 60 x 7 . Therefore
p-(00xr)+p- (00 x1)=0

The cyclic order can be permuted giving

00-(rxp)+d0-(txp) = 0
66 -[(rxp)+(Fxp)] = 0
00 - % (rxp) = 0
Because the infinitessimal angle 60 is arbitrary, then the time derivative
% (rxp)=0

about the azis of rotation 66. But the bracket (r X p) equals the angular momentum. That is;
Angular momentum = (r X p) = constant

This proves the Noether’ theorem that the angular momentum about any axis is conserved if the Lagrangian
is rotationally invariant about that azis.

7.4 Example: Diatomic molecules and axially-symmetric nucle:

An interesting example of Noether’s theorem applies to diatomic molecules such as Hy, No, Fy, Oy, Cls
and Brs. The electric field produced by the two charged nuclei of the diatomic molecule has cylindrical
symmetry about the axis through the two nuclei. Electrons are bound to this dumbbell arrangement of the two
nuclear charges which may be rotating and vibrating in free space. Assuming that there are no external torques
acting on the diatomic molecule in free space, then the angular momentum about any fized axis in free space
must be conserved according to Noether’s theorem. If no external torques are applied, then the component of
the angular momentum about any fized axis is conserved, that is, the total angular momentum is conserved.
What is especially interesting is that since the electrostatic potential, and thus the Lagrangian, of the diatomic
molecule has cylindrical symmetry, that is g—g = 0, then the component of the angular momentum with respect
to this symmetry axis also is conserved irrespective of how the diatomic molecule rotates or vibrates in free
space. That is, an additional symmetry has been identified that leads to an additional conservation law that
applies to the angular momentum.

An example of Noether’s theorem is in nuclear physics where some nuclei have a spheroidal shape similar
to an american football or a rugby ball. This spheroidal shape has an axis of symmetry along the long axis.
The Lagrangian is rotationally invariant about the symmetry azis resulting in the angular momentum about
the symmetry axis being conserved in addition to conservation of the total angular momentum.

7.5 Cyclic coordinates

Translational and rotational invariance occurs when a system has a cyclic coordinate qi. A cyclic coordinate
is one that does not explicitly appear in the Lagrangian. The term cyclic is a natural name when one has
cylindrical or spherical symmetry. In Hamiltonian mechanics a cyclic coordinate often is called an ignorable
coordinate. By virtue of Lagrange’s equations

d oL 0L
- _ =2 7.15
204 o0 (713)
then a cyclic coordinate g, is one for which gTLk = 0. Thus
d 0L
— = — 5. =0 7.16
T (7.16)

that is, pg is a constant of motion if the conjugate coordinate qy, is cyclic. This is just Noether’s Theorem.
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7.6 Kinetic energy in generalized coordinates

Application of Noether’s theorem to the conservation of energy requires the kinetic energy to be expressed
in generalized coordinates. In terms of fixed rectangular coordinates, the kinetic energy for N bodies, each
having three degrees of freedom, is expressed as

1 N 3 .2
T=3 > Z mai? ; (7.17)

These can be expressed in terms of generalized coordinates as . ; = %q,i(g;,t) and in terms of generalized
velocities
S
. 8.7304)1‘ . 8.7304)1‘
Ta,i =

’ ag; ¥ "o

Jj=1

(7.18)

Taking the square of Z,; and inserting into the kinetic energy relation gives

2
T(q.t ZZ 83:& 8xmqjqk ZZ &mzaxm. ZZ o (%) (7.19)

a 1,7, k qj

This can be abbreviated as

T(q, c'la t) = TQ(qa (‘la t) + Tl (q, c'la t) + TO(qv t) (720)
where
. 8% i O%asi . .
Tz(q,4,t) = Z Z 4iqk = Zaijij (7.21)
<2 dq;  Oqu —
o 4,7, s
. azoe i ax(x i g
Ti(q,4,t) = ZZ ijq] (7.22)
5‘1’a A\’
To(a,t) = ZZ (7.23)
where
0 a,l 0 a,i
EZZQ 57% (7.24)
a=14,=1 4 4k
When the transformed system is scleronomic, time does not appear explicitly in the transformation
equations to generalized coordinates since 6%?1- = 0. Then T} =Ty = 0, and the kinetic energy reduces to
a homogeneous quadratic function of the generalized velocities
T(q,4,t) = T>(q,4,1) (7.25)
A useful relation can be derived by taking the differential of equation 7.21 with respect to ¢;. That is
aTQ qa q7
—oa Z aeqr + Z ajig; (7.26)

Multiply this by ¢; and sum over [ glves
aT ) Y
> a 2;1101 Zaququ +Zaqu]qz = QZaququ = 2T,
1

Similarly, the products of the generalized velocities ¢, with the correspondlng derivatives of 77 and Ty give

ar,
ZQl 5, - b (7.27)
9Ty (q. &, ,
qu(+q) = Ti(q,4,1) (7.28)
l 0
yog2hat (7.29)
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Equation 7.25 gives that T = T5 when the transformed system is scleronomic, i.e. ag‘z £ = (, and then the

kinetic energy is a quadratic function of the generalized velocities ¢;. Using the definition of the generalized
momentum equation 7.3, assuming 1" = T5, and that the potential U is velocity independent, gives that

oL or oU 8T2
= — - 7.30
b g g 9y Oq (7.30)

Then equation 7.27 reduces to the useful relation that

1 1
= — ¥ = —-q- .1
5 % @pr =59 P (7.31)

where, for compactness, the summation is abbreviated as a scalar product.

7.7 Generalized energy and the Hamiltonian function

Consider the time derivative of the Lagrangian, plus the fact that time is the independent variable in the
Lagrangian. Then the total time derivative is

dL oL oL oL
g . — 4 — 7.32
at 2, +§j: 25,% " i (7.32)
The Lagrange equations for a conservative force are given by equation 6.60 to be
=0t A= (q,t 7.33
dt 8(]] 8(]]' Q] + kZ:l k aqj (q7 ) ( )

The holonomic constraints can be accounted for using the Lagrange multiplier terms while the generalized
force Qfx ¢ includes non-holonomic forces or other forces not included in the potential energy term of the
Lagrangian, or holonomic forces not accounted for by the Lagrange multiplier terms.

Substituting equation 7.33 into equation 7.32 gives

dr d oL . EXC &
== qudta =D s [Qj +Z>\ +Zaq i+
J k=1
— ;. oL . | HEXC < gy, oL
- Z dt (qJ 3Qj> qu lQJ + Z)\k dq, (@, )| + En (7.34)
J J k=1
This can be written in the form
d oL . c - Ogr, oL
dt Z(qﬂaq > —-L :qu‘ [QJEX +Z>\ka—qj(q7t) e (7.35)
J J k=1

Define Jacobi’s Generalized Energy' h(q,d,t) by
. . OL .
ha,q,t) = (qj—aq) — L(q,q,t) (7.36)
4 j
J

Jacobi’s generalized momentum, equation 7.3, can be used to express the generalized energy h(q,q,t) in
terms of the canonical coordinates ¢; and p;, plus time ¢. Define the Hamiltonian function to equal the
generalized energy expressed in terms of the conjugate variables (g;,p;), that is,

. . 0L . . .
H(q,pt) = h(q,a,t) =) <Qja—q> — L(a,4,t) = Y (4;p;) — L(a, 4, 1) (7.37)
j / J
This Hamiltonian H (q, p,t) underlies Hamiltonian mechanics which plays a profoundly important role in
most branches of physics as illustrated in chapters 8,15 and 18.

I Most textbooks call the function h(q, &,t) Jacobi’s energy integral. This book adopts the more descriptive name Generalized
energy in analogy with use of generalized coordinates q and generalized momentum p.
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7.8 Generalized energy theorem

The Hamilton function, 7.37 plus equation 7.35 lead to the generalized energy theorem

dH (q,p,t) _ dh(a,4t) N~ | Hexc | N~y 9% OL(q, 4. t)
7 = 7 = Z 4 |Q;7" " + Z )\ka_qj((b Dl o (7.38)
j k=1
Note that for the special case where all the external forces {QJEXC +> Akgiqf(q, t)} =0, then
dH oL
—_— = —— 7.39
dt ot ( )

Thus the Hamiltonian is time independent if both [Q]EXC + > ey )\k%%?(q, t)] = 0 and the Lagrangian are

time-independent. For an isolated closed system having no external forces acting, then the Lagrangian is
time independent because the velocities are constant, and there is no external potential energy. That is, the
Lagrangian is time-independent, and

d . OL dH oL

As a consequence, the Hamiltonian H (q, p,t), and generalized energy h(q, q,t), both are constants of motion
if the Lagrangian is a constant of motion, and if the external non-potential forces are zero. This is an example
of Noether’s theorem, where the symmetry of time independence leads to conservation of the conjugate
variable, which is the Hamiltonian or Generalized energy.

7.9 Generalized energy and total energy

The generalized kinetic energy, equation 7.20, can be used to write the generalized Lagrangian as

If the potential energy U does not depend explicitly on velocities ¢; or time, then

0L 9(T-U) T

oL _Jue - 9 7.42

Equation 7.42 can be used to write the Hamiltonian, equation 7.37, as

H(q,pt)=) (dj%) +> (%‘g—?) +> (%g—g) — L(q,4,t) (7.43)

; J J

?

Using equations 7.27,7.28,7.29 gives that the total generalized Hamiltonian H (q, p,t) equals
H(q,p,t)ZQTg —|—T1—(T2—|—T1 —|—TQ—U):T2—T0+U (744)

But the sum of the kinetic and potential energies equals the total energy. Thus equation 7.44 can be rewritten
in the form

H(q,pt)=(T+U)— (Ty +2Ty) = E — (T} + 2Tp) (7.45)

Note that Jacobi’s generalized energy and the Hamiltonian do not equal the total energy E. However, in
the special case where the transformation is scleronomic, then 77 = Ty = 0, and if the potential energy U
does not depend explicitly of ¢;, then the generalized energy (Hamiltonian) equals the total energy, that is,
H = E. Recognition of the relation between the Hamiltonian and the total energy facilitates determining
the equations of motion.
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7.10 Hamiltonian invariance

Chapters 7.8,7.9 addressed two important and independent features of the Hamiltonian regarding: a) when
H is conserved, and b) when H equals the total mechanical energy. These important results are summarized
below with a discussion of the assumptions made in deriving the Hamiltonian, as well as the implications.

a) Conservation of generalized energy

The generalized energy theorem (7.38) was given as

dH (qv pvt) dh(q’ q, t) . EXC - agk aL(qa q, t)
- =34 ot Ao (g, )| — AL DY 4
Note that when 3_; ¢; [Qfxc + > )\k%’;(q, t)} = 0, then equation 7.46 reduces to
dH OL
- _ == 7.47
dt ot ( )

Also, when ;g [QfXC + >, )\kg—‘;j(q, t)} = 0, and if the Lagrangian is not an explicit function of time,
then the Hamiltonian is a constant of motion. That is, H is conserved if, and only if, the Lagrangian, and
consequently the Hamiltonian, are not explicit functions of time, and if the external forces are zero.

b) The generalized energy and total energy

If the following two requirements are satisfied
1) The kinetic energy has a homogeneous quadratic dependence on the generalized velocities, that is, the

transformation to generalized coordinates is independent of time, agg‘;‘i =0.
2) The potential energy is not velocity dependent, thus the terms 2—(? =0.

Then equation 7.45 implies that the Hamiltonian equals the total mechanical energy, that is,

H=T+U=E (7.48)

Expressed in words, the generalized energy (Hamiltonian) equals the total energy if the constraints are
time independent and the potential energy is velocity independent. This is equivalent to stating that, if the
constraints, or generalized coordinates, for the system are time independent, then H = E.

The four combinations of the above two independent conditions, assuming that the external forces term
in equation 7.46 is zero, are summarized in table 7.1.

Table 7.1: Hamiltonian and total energy

Hamiltonian Constraints and coordinate transformation
Time behavior Time independent Time dependent
‘Z—i] = —%—f =0 H conserved, H=F H conserved, H # F

% = 7%17? # 0 | H not conserved, H = F | H not conserved, H # E

Note the following general facts regarding the Lagrangian and the Hamiltonian.

(1) the Lagrangian is indefinite with respect to addition of a constant to the scalar potential,

(2) the Lagrangian is indefinite with respect to addition of a constant velocity,

(3) there is no unique choice of generalized coordinates.

(4) the Hamiltonian is a scalar function that is derived from the Lagrangian scalar function.

(5) the generalized momentum is derived from the Lagrangian.

These facts, plus the ability to recognize the conditions under which H is conserved, and when H = E,
can greatly facilitate solving problems as shown by the following two examples.
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7.5 Example: Linear harmonic oscillator on a cart moving at constant velocity

Consider a linear harmonic oscillator located on a cart that
s moving with constant velocity vy in the x direction, as shown
in the adjacent figure. Let the laboratory frame be the unprimed
frame, and the cart frame be designated the primed frame. As- X
sume that x =2’ at t = 0. Then

2 =z — vyt =i — v ¥ =7

The harmonic oscillator will have a potential energy of
1 1
U= §kxl2 = §k (z — vot)?

Laboratory frame: The Lagrangian is

mx2

L(z,2,t) = - - —k:(:r — vgt)? Yt

Lagrange equation A,L = 0 gives the equation of motion to be Harmonic oscillator on cart moving at
uniform velocity vg.

mi = —k(z — vot)

The definition of generalized momentum gives

oL .
=—=mz
P=%i
The Hamultonian is 5 )
L _p 1
H(z,p,t) Z% =~ om +§k(ﬂv—v0t)2
The Hamiltonian is the sum of the kinetic and potentml energies and equals the total energy of the system,
but it is not conserved since L and H are both explicit functions of time, that is % = %—I;I = —%—f # 0.

Physically this is understood in that energy must flow into and out of the external constraint keeping the cart
moving uniformly at a constant velocity vy against the reaction to the oscillating mass. That is, assuming
a uniform velocity for the moving cart constitutes a time-dependent constraint on the mass, and the force of
constraint does work in actual displacement of the complete system. If the constraint did not exist, then the
cart momentum would oscillate such that the total momentum of cart plus spring system is conserved.
Cart frame: Transform the Lagrangian to the primed coordinates in the moving frame of reference,
which also is an inertial frame. Then the Lagrangian L, in terms of the moving cart frame coordinates, is

1
L(z' 3 t) = % (2" + 2d"vo + v5) — §k$’2
The Lagrange equation of motion AL = 0 gives the equation of motion to be
mi' = —ka'

where x' is the displacement of the mass with respect to the cart. This implies that an observer on 